Spanish Poplar Biomass as a Precursor for Nanocellulose Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.3. Characterization
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mehanny, S.; Ibrahim, H.; Darwish, L.; Farag, M.; El-Habbak, A.-H.M.; El-Kashif, E. Effect of Environmental Conditions on Date Palm Fiber Composites. In Date Palm Fiber Composites; Springer: Singapore, 2020; pp. 287–320. [Google Scholar]
- Kumar, R.; Singh, S.; Singh, O.V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 2008, 35, 377–391. [Google Scholar] [CrossRef]
- Mehanny, S.; Darwish, L.; Ibrahim, H.; El-Wakad, M.T.; Farag, M. High-content lignocellulosic fibers reinforcing starch-based biodegradable composites: Properties and applications. In Composites from Renewable and Sustainable Materials; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Moustafa, H.; Rahman, E.N.A.E.L.; Mehanny, S.; Hemida, M.H.; El-Kashif, E. Reinforcement of starch based biodegradable composite using Nile rose residues. J. Mater. Res. Technol. 2020, 9, 6160–6171. [Google Scholar] [CrossRef]
- Mehanny, S.; Farag, M.; Rashad, R.M.; Elsayed, H. Fabrication and Characterization of Starch Based Bagasse Fiber Composite. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; p. 1345. [Google Scholar]
- Ibrahim, H.; Mehanny, S.; Darwish, L.; Farag, M. A comparative study on the mechanical and biodegradation characteristics of starch-based composites reinforced with different lignocellulosic fibers. J. Polym. Environ. 2018, 26, 2434–2447. [Google Scholar] [CrossRef]
- Su, T.; Zhao, D.; Khodadadi, M.; Len, C. Lignocellulosic biomass for bioethanol: Recent advances, technology trends and barriers to industrial development. Curr. Opin. Green Sustain. Chem. 2020, 24, 56–60. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Hryniewicz, M.; Szadkowska, D.; Szadkowski, J. Production of Electricity and Heat from Biomass Wastes Using a Converted Aircraft Turbine AI-20. Processes 2021, 9, 364. [Google Scholar] [CrossRef]
- Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S. Biofuels from algae: Challenges and potential. Biofuels 2010, 1, 763–784. [Google Scholar] [CrossRef] [PubMed]
- Qian, X. Statistical Analysis and Evaluation of the Advanced Biomass and Natural Gas Co-Combustion Performance. Ph.D. Thesis, Morgan State University, Baltimore, MD, USA, 2019. [Google Scholar]
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable composites based on lignocellulosic fibers—An overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Bajpai, P. Structure of lignocellulosic biomass. In Pretreatment of Lignocellulosic Biomass for Biofuel Production; Springer: Cham, Switzerland, 2016; pp. 7–12. [Google Scholar]
- Feng, Z.; Shang, B.; Gao, F.; Calatayud, V. Current ambient and elevated ozone effects on poplar: A global meta-analysis and response relationships. Sci. Total Environ. 2019, 654, 832–840. [Google Scholar] [CrossRef] [PubMed]
- International Poplar Commission. Food and Agriculture Organization of the United Nations. In Proceedings of the 23rd session of the International Poplar Commission and 44th session of Its Executive Committee, 26–30 October 2008; Beijing, China. [Google Scholar]
- Qian, X.; Yang, Y.; Lee, S.W. Design and Evaluation of the Lab-Scale Shell and Tube Heat Exchanger (STHE) for Poultry Litter to Energy Production. Processes 2020, 8, 500. [Google Scholar] [CrossRef]
- Christersson, L. Poplar plantations for paper and energy in the south of Sweden. Biomass Bioenergy 2008, 32, 997–1000. [Google Scholar] [CrossRef]
- Bacenetti, J.; Gonzalez Garcia, S.; Mena, A.; Fiala, M. Life cycle assessment: An application to poplar for energy cultivated in Italy. J. Agric. Eng. 2012, 72–78. [Google Scholar] [CrossRef]
- Dieter, M. Poplars and other fast growing trees-renewable resources for future green economies. In Proceedings of the 25th Session of the International Poplar Commission, Berlin, Germany, 12–16 September 2016. Working Paper IPC/15. [Google Scholar]
- Rosúa, J.M.; Pasadas, M. Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar, for providing heating in homes. Renew. Sustain. Energy Rev. 2012, 16, 4190–4195. [Google Scholar] [CrossRef]
- Dufresne, A. Cellulose nanomaterial reinforced polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 2017, 29, 1–8. [Google Scholar] [CrossRef]
- Sheltami, R.M.; Kargarzadeh, H.; Abdullah, I.; Ahmad, I. Thermal properties of cellulose nanocomposites. Handb. Nanocellul. Cellul. Nanocompos. 2017, 2, 523–552. [Google Scholar]
- Österberg, M.; Vartiainen, J.; Lucenius, J.; Hippi, U.; Seppälä, J.; Serimaa, R.; Laine, J. A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl. Mater. Interfaces 2013, 5, 4640–4647. [Google Scholar] [CrossRef] [PubMed]
- Camarero-Espinosa, S.; Endes, C.; Mueller, S.; Petri-Fink, A.; Rothen-Rutishauser, B.; Weder, C.; Clift, M.J.D.; Foster, E.J. Elucidating the potential biological impact of cellulose nanocrystals. Fibers 2016, 4, 21. [Google Scholar] [CrossRef]
- Favier, V.; Canova, G.R.; Cavaillé, J.Y.; Chanzy, H.; Dufresne, A.; Gauthier, C. Nanocomposite materials from latex and cellulose whiskers. Polym. Adv. Technol. 1995, 6, 351–355. [Google Scholar] [CrossRef]
- Desmaisons, J.; Gustafsson, E.; Dufresne, A.; Bras, J. Hybrid nanopaper of cellulose nanofibrils and PET microfibers with high tear and crumpling resistance. Cellulose 2018, 25, 7127–7142. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Ferrer, A.; Tyagi, P.; Yin, Y.; Salas, C.; Pal, L.; Rojas, O.J. Nanocellulose in thin films, coatings, and plies for packaging applications: A review. BioResources 2017, 12, 2143–2233. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, A. Nanocellulose processing properties and potential applications. Curr. For. Rep. 2019, 5, 76–89. [Google Scholar] [CrossRef]
- Mehanny, S.; Abu-El Magd, E.E.; Ibrahim, M.; Farag, M.; Gil-San-Millan, R.; Navarro, J.; El-Kashif, E. Extraction and characterization of nanocellulose from three types of palm residues. J. Mater. Res. Technol. 2021, 10, 526–537. [Google Scholar] [CrossRef]
- Habibi, Y.; Chanzy, H.; Vignon, M.R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 2006, 13, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, A. Nanocellulose: From Nature to High Performance Tailored Materials; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2017. [Google Scholar]
- Thomas, B.; Raj, M.C.; Joy, J.; Moores, A.; Drisko, G.L.; Sanchez, C. Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem. Rev. 2018, 118, 11575–11625. [Google Scholar] [CrossRef]
- Xiao, Y.T.; Chin, W.L.; Abd Hamid, S.B. Facile preparation of highly crystalline nanocellulose by using ionic liquid. Adv. Mater. Res. 2015, 1087, 106–110. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.-L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr. Polym. 2013, 95, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Chakrabarty, D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 2011, 86, 1291–1299. [Google Scholar] [CrossRef]
- Fahma, F.; Iwamoto, S.; Hori, N.; Iwata, T.; Takemura, A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 2010, 17, 977–985. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Alvarez, V.A.; Vázquez, A. Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1672–1680. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D., II; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J. Appl. Polym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr. Polym. 2018, 181, 1038–1051. [Google Scholar] [CrossRef]
- Mora, J.I. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2008, 149–159. [Google Scholar] [CrossRef]
- Shi, J.; Shi, S.Q.; Barnes, H.M.; Pittman, C.U., Jr. A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources 2011, 6, 879–890. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Phanthong, P.; Ma, Y.; Guan, G.; Abudula, A. Extraction of nanocellulose from raw apple stem. J. Jpn. Inst. Energy 2015, 94, 787–793. [Google Scholar] [CrossRef] [Green Version]
- Lani, N.S.; Ngadi, N.; Johari, A.; Jusoh, M. Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J. Nanomater. 2014, 2014, 13. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Zhang, H.; Xu, D.; He, Z.; Pan, X.; Gui, S.; Dai, X.; Fan, J.; Dong, X.; Li, Y. Screening of Nanocellulose from Different Biomass Resources and Its Integration for Hydrophobic Transparent Nanopaper. Molecules 2020, 25, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chen, J.; Zhang, L.; Zhan, P.; Liu, N.; Wu, Z. Preparation of nanocellulose from steam exploded poplar wood by enzymolysis assisted sonication. Mater. Res. Express 2020, 7, 35010. [Google Scholar] [CrossRef]
- Zhao, G.; Du, J.; Chen, W.; Pan, M.; Chen, D. Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: Rice straw and poplar wood. Cellulose 2019, 26, 8625–8643. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, M.; Wu, X.; Shi, T.; Chen, H.; Wang, H. Preparation of nanocellulose aerogel from the poplar (Populus tomentosa) catkin fiber. Forests 2019, 10, 749. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhao, X.; Liu, S. Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix. Carbohydr. Polym. 2013, 94, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.; Retsina, T.; Iakovlev, M.; van Heiningen, A.; Deng, Y.; Shatkin, J.A.; Mulyadi, A. American process: Production of low cost nanocellulose for renewable, advanced materials applications. In Materials Research for Manufacturing; Springer: Cham, Switzerland, 2016; pp. 267–302. [Google Scholar]
Poplar | MCC | |||||||
---|---|---|---|---|---|---|---|---|
Length | Width | Length | Width | |||||
Processing time (min) | 5 | 15 | 5 | 15 | 5 | 10 | 5 | 10 |
Average (nm) | 371.7 | 218.8 | 131.1 | 68.8 | 141.5 | 122 | 39.9 | 19.9 |
Std. dev. (nm) | 192.1 | 172.1 | 88.8 | 37 | 42 | 34.5 | 12.7 | 5.1 |
Max. (nm) | 922 | 815 | 402 | 157 | 232 | 208 | 77 | 29 |
Min. (nm) | 100 | 56 | 23 | 21 | 66 | 52 | 19 | 9 |
Cellulose Purification | Nanocellulose Extraction | Size | IR and Crystallinity | |||
---|---|---|---|---|---|---|
Step 1 | Step 2 | |||||
poplar | NaClO2 for 1 h (6 times) then 2 wt% KOH 90 °C for 2 h | NaClO2 for 2 h then 5 wt% KOH 90 °C for 2 h | 0.3 wt% disc grinder 1500 r/min Then high-pressure homogenizer 700 bar then 100 bar 30 min | CNF 20–30 nm | FTIR -Lignin removal Crystallinity Native pop. 55% CNC pop. 60% | [47] |
poplar | Steam explosion 2 MPa 180 s | NaClO2 (9.7 g/L) for 1 h at 75 °C | Enzymolysis Cellulase (diff time, temp, and conc) Then Probe sonicator 20 min, 200 W | CNC 310 nm | FTIR -Lignin removal Crystallinity Native pop. 45% CNC pop. 62% | [48] |
poplar | NaClO2 70 °C for 1 h (5 times) Then 5 wt% NaOH at 90 °C for 2 h | NaClO2 70 °C for 1 h Then 5 wt% NaOH at 90 °C for 2 h | 64 wt% H2SO4 45 °C for 30 min (OR) 1% wt disk grinder 1500 rpm for 5 times | CNC 11.4/153.2 nm CNF 18.5 nm | FTIR -Lignin removal -SO4 group for CNC Native pop. 56.1% CNC pop. 72.9% CNF pop. 56.4% | [49] |
Poplar Catkin Fiber | 1% NaClO2 at 75 °C 1 h (repeat 3 times) | 2 wt% NaOH then 5 wt% NaOH at 90 °C | Probe sonicator 1% wt soln 600 w 19.5–20.5 kHz For 5–10 min | CNF 15–70 nm 5 min more sonication decrease size by 5 nm | FTIR Lignin removal | [50] |
Poplar (this study) | 10% wt. NaOH 120 °C, 2 h | NaClO2 100 °C, acidic medium. (3–4 times) | 60% H2SO4, 40 °C for 5, 10, and 15 | CNC 69 nm | FTIRLignin removal Crystallinity Native 58% CNC 65% | ---- |
Alkaline Peroxide Mechanical Pulp (APMP) | NaClO2 at 75 °C 1 h (twice) | 4 wt% NaOH at 80 °C for 2 h | Probe sonication 15 min 900 watt | CNF 20–90 nm | FTIR Lignin removal Crystallinity APMP 72.6% CNF 77% | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehanny, S.; Magd, E.E.A.-E.; Sorbara, S.; Navarro, J.; Gil-San-Millan, R. Spanish Poplar Biomass as a Precursor for Nanocellulose Extraction. Appl. Sci. 2021, 11, 6863. https://doi.org/10.3390/app11156863
Mehanny S, Magd EEA-E, Sorbara S, Navarro J, Gil-San-Millan R. Spanish Poplar Biomass as a Precursor for Nanocellulose Extraction. Applied Sciences. 2021; 11(15):6863. https://doi.org/10.3390/app11156863
Chicago/Turabian StyleMehanny, Sherif, Ehab E. Abu-El Magd, Simona Sorbara, Jorge Navarro, and Rodrigo Gil-San-Millan. 2021. "Spanish Poplar Biomass as a Precursor for Nanocellulose Extraction" Applied Sciences 11, no. 15: 6863. https://doi.org/10.3390/app11156863
APA StyleMehanny, S., Magd, E. E. A. -E., Sorbara, S., Navarro, J., & Gil-San-Millan, R. (2021). Spanish Poplar Biomass as a Precursor for Nanocellulose Extraction. Applied Sciences, 11(15), 6863. https://doi.org/10.3390/app11156863