A Novel Acceleration-Based Moving Force Identification Algorithm to Detect Global Bridge Damage
Abstract
:Featured Application
Abstract
1. Introduction
2. Acceleration Based Moving Force Identification Theory
2.1. MFI State Space Equations and Their General Solution
2.2. New Acceleration-Based MFI Algorithm
3. Numerical Model
3.1. Bridge and Vehicle Models
3.2. Implementation of Acceleration-Based Moving Force Identification
3.3. Sensitivity Study
4. Inferred Weight as an Indicator of Structural Health
4.1. A-MFI Result with Damaged Bridge Case
4.2. Bridge Damage Detection Using Inferred Vehicle GVW Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Farrar, C.R.; Doebling, S.W.; Nix, D.A. Vibration–based structural damage identification. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2001, 359, 131–149. [Google Scholar] [CrossRef]
- Worden, K.; Dulieu-Barton, J.M. An Overview of Intelligent Fault Detection in Systems and Structures. Struct. Health Monit. 2004, 3, 85–98. [Google Scholar] [CrossRef]
- Carden, E.P.; Fanning, P. Vibration Based Condition Monitoring: A Review. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Gattulli, V.; Cunha, A.; Caetano, E.; Potenza, F.; Arena, A.; Di Sabatino, U. Dynamical models of a suspension bridge driven by vibration data. Smart Struct. Syst. 2021, 27, 139. [Google Scholar]
- Kim, J.-T.; Ryu, Y.-S.; Cho, H.-M.; Stubbs, N. Damage identification in beam-type structures: Frequency-based method vs. mode-shape-based method. Eng. Struct. 2003, 25, 57–67. [Google Scholar] [CrossRef]
- Cantero, D.; Gonzalez, A. Bridge Damage Detection Using Weigh-in-Motion Technology. J. Bridg. Eng. 2015, 20, 04014078. [Google Scholar] [CrossRef] [Green Version]
- Moses, F. Weigh-in-Motion System Using Instrumented Bridges. Transp. Eng. J. ASCE 1979, 105, 233–249. [Google Scholar] [CrossRef]
- Lydon, M.; Taylor, S.E.; Robinson, D.; Mufti, A.; Brien, E.J.O. Recent developments in bridge weigh in motion (B-WIM). J. Civ. Struct. Health Monit. 2015, 6, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Ojio, T.; Carey, C.H.; O’Brien, E.J.; Doherty, C.; Taylor, S.E. Contactless Bridge Weigh-in-Motion. J. Bridge Eng. 2016, 21, 04016032. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.-Z.; Celik, O.; Catbas, F.N.; OBrien, E.J.; Taylor, S. Structural displacement monitoring using deep learning-based full field optical flow methods. Struct. Infrastruct. Eng. 2020, 16, 51–71. [Google Scholar] [CrossRef]
- Mohammed, Y.M.; Uddin, N. Acceleration-based bridge weigh-in-motion. Bridg. Struct. 2019, 14, 131–138. [Google Scholar] [CrossRef]
- Sekiya, H.; Kubota, K.; Miki, C. Simplified Portable Bridge Weigh-in-Motion System Using Accelerometers. J. Bridg. Eng. 2018, 23, 04017124. [Google Scholar] [CrossRef]
- Park, K.-T.; Kim, S.-H.; Park, H.-S.; Lee, K.-W. The determination of bridge displacement using measured acceleration. Eng. Struct. 2005, 27, 371–378. [Google Scholar] [CrossRef]
- Gindy, M.; Vaccaro, R.; Nassif, H.; Velde, J. A State-Space Approach for Deriving Bridge Displacement from Acceleration. Comput. Civ. Infrastruct. Eng. 2008, 23, 281–290. [Google Scholar] [CrossRef]
- Sekiya, H.; Kimura, K.; Miki, C. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers. Sensors 2016, 16, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, S.; Fang, Y. Moving force identification: Optimal state estimation approach. J. Sound Vib. 2001, 239, 233–254. [Google Scholar] [CrossRef]
- OBrien, E.J.; Khan, M.A.; McCrum, D.P.; Žnidarič, A. Using Statistical Analysis of an Acceleration-Based Bridge Weigh-In-Motion System for Damage Detection. Appl. Sci. 2020, 10, 663. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Rowley, C.; OBrien, E.J. A general solution to the identification of moving vehicle forces on a bridge. Int. J. Numer. Methods Eng. 2008, 75, 335–354. [Google Scholar] [CrossRef]
- Wu, S.; Law, S. Moving force identification based on stochastic finite element model. Eng. Struct. 2010, 32, 1016–1027. [Google Scholar] [CrossRef]
- Wu, S.; Law, S. Vehicle axle load identification on bridge deck with irregular road surface profile. Eng. Struct. 2011, 33, 591–601. [Google Scholar] [CrossRef]
- Chan, T.; Law, S.; Yung, T.; Yuan, X. An interpretive method for moving force identification. J. Sound Vib. 1999, 219, 503–524. [Google Scholar] [CrossRef]
- Law, S.S.; Chan, T.; Zeng, Q.H. Moving Force Identification—A Frequency and Time Domains Analysis. J. Dyn. Syst. Meas. Control. 1999, 121, 394–401. [Google Scholar] [CrossRef]
- Law, S.; Chan, T.; Zeng, Q. Moving force identification: A time domain method. J. Sound Vib. 1997, 201, 1–22. [Google Scholar] [CrossRef]
- Law, S.; Bu, J.; Zhu, X.; Chan, S.L. Vehicle axle loads identification using finite element method. Eng. Struct. 2004, 26, 1143–1153. [Google Scholar] [CrossRef]
- O’Connor, C.; Chan, T.; Tin, H. Dynamic Wheel Loads From Bridge Strains. J. Struct. Eng. 1988, 114, 1703–1723. [Google Scholar] [CrossRef]
- Trujillo, D.M. The direct numerical integration of linear matrix differential equations using pade approximations. Int. J. Numer. Methods Eng. 1975, 9, 259–270. [Google Scholar] [CrossRef]
- Trujillo, D.M. Application of dynamic programming to the general inverse problem. Int. J. Numer. Methods Eng. 1978, 12, 613–624. [Google Scholar] [CrossRef]
- Zhu, X.; Law, S.S.; Bu, J.Q. A State Space Formulation for Moving Loads Identification. J. Vib. Acoust. 2006, 128, 509–520. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Goncharsky, A.; Stepanov, V.; Yagola, A.G. Numerical Methods for the Solution of Ill-Posed Problems; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Rowley, C.W.; OBrien, E.J.; Gonzalez, A.; ŽNIDARIČ, A. Experimental Testing of a Moving Force Identification Bridge Weigh-in-Motion Algorithm. Exp. Mech. 2008, 49, 743–746. [Google Scholar] [CrossRef]
- Carey, C.H.; OBrien, E.J.; Keenahan, J. Investigating the Use of Moving Force Identification Theory in Bridge Damage Detection. Key Eng. Mater. 2013, 569–570, 215–222. [Google Scholar] [CrossRef]
- OBrien, E.J.; Carey, C.; Keenahan, J. Bridge damage detection using ambient traffic and moving force identification. Struct. Control. Health Monit. 2015, 22, 1396–1407. [Google Scholar] [CrossRef] [Green Version]
- OBrien, E.J.; Fitzgerald, P.C.; Malekjafarian, A.; Sevillano, E. Bridge damage detection using vehicle axle-force information. Eng. Struct. 2017, 153, 71–80. [Google Scholar] [CrossRef]
- Trujillo, D.M.; Busby, H.R. Practical Inverse Analysis in Engineering; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Bellman, R. Introduction to Mathematical Theory of Control Processes; SERBIULA (sistema Librum 2.0); Elsevier: Amsterdam, The Netherlands, 1968; Volume II. [Google Scholar]
- Adhikari, S. Structural Dynamic Analysis with Generalized Damping Models: Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- OBrien, E.J.; McGetrick, P.; Gonzalez, A. A drive-by inspection system via vehicle moving force identification. Smart Struct. Syst. 2014, 13, 821–848. [Google Scholar] [CrossRef] [Green Version]
- Keenahan, J.; Ren, Y.; OBrien, E.J. Determination of road profile using multiple passing vehicle measurements. Struct. Infrastruct. Eng. 2019, 16, 1262–1275. [Google Scholar] [CrossRef]
- ISO. ISO-8608: Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data: International Standards Organisation; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- Blab, R.; Litzka, J. Measurements of the lateral distribution of heavy vehicles and its effects on the design of road pavements. In Proceedings of the 4th International Symposium on Heavy Vehicle Weights and Dimensions, Ann Arbor, MI, USA, 25–29 June 1995; pp. 389–395. [Google Scholar]
- Walker, D.; Cebon, D. The metamorphosis of LTPP traffic data. In Proceedings of the 6th International Conference on Weigh-In-Motion (ICWIM 6) International Society for Weigh-In-MotionInstitut Francais des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTARR) International Transport ForumForum of European National Highway Research Laboratories (FEHRL) Transportation Research BoardFederal Highway Administration; Wiley Online Library: Hoboken, NJ, USA, 2012. [Google Scholar]
- Walker, D.; Selezneva, O.; Wolf, D. Findings from LTPP SPS WIM systems validation study. In Proceedings of the 6th International Conference on Weigh-In-Motion (ICWIM 6) International Society for Weigh-In-MotionInstitut Francais des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTARR) International Transport ForumForum of European National Highway Research Laboratories (FEHRL) Transportation Research BoardFederal Highway Administration; Wiley Online Library: Hoboken, NJ, USA, 2012. [Google Scholar]
- Martinez, D.; Malekjafarian, A.; OBrien, E.J. Bridge flexural rigidity calculation using measured drive-by deflections. J. Civ. Struct. Health Monit. 2020, 10, 833–844. [Google Scholar] [CrossRef]
- Martinez, D.; Malekjafarian, A.; OBrien, E.J. Bridge health monitoring using deflection measurements under random traffic. Struct. Control. Health Monit. 2020, 27, 2593. [Google Scholar] [CrossRef]
- Richardson, J.; Jones, S.; Brown, A.; Hajializadeh, D.; OBrien, E.J. On the use of bridge weigh-in-motion for overweight truck enforcement. Int. J. Heavy Veh. Syst. 2014, 21, 83. [Google Scholar] [CrossRef]
- Caprani, C. Calibration of a Congestion Load Model for Highway Bridges Using Traffic Microsimulation. Struct. Eng. Int. 2012, 22, 342–348. [Google Scholar] [CrossRef]
- OBrien, E.J.; Brownjohn, J.M.W.; Hester, D.; Huseynov, F.; Casero, M. Identifying damage on a bridge using rotation-based Bridge Weigh-In-Motion. J. Civ. Struct. Health Monit. 2021, 11, 175–188. [Google Scholar] [CrossRef]
Span | 20 m |
---|---|
Number of finite elements | 20 |
Total degrees of freedom | 42 |
Young’s Modulus, E | 3.5 × 1010 N/m2 |
Cross sectional area | 2.046 m2 |
Second moment of area, J | 0.2991 m4 |
Damping, ξ | 3% |
Property | Symbol/Units | Mean Value/Value | Standard Deviation |
---|---|---|---|
Body mass | ms: kg | From database | |
Unsprung masses | Mu,1: kg | 1100 | 300 |
Mu,2: kg | 700 | 250 | |
Suspension stiffnesses | Ks,1: N/m | 0.4 × 106 | 0.1 × 106 |
Ks,2: N/m | 1 × 106 | 0.3 × 106 | |
Suspension damping | Cs,1: Ns/m | 10 × 103 | 2.5 × 103 |
Cs,2: Ns/m | 20 × 103 | 5 × 103 | |
Tire stiffnesses | Kt,1: N/m | 1.75 × 106 | 0.5 × 106 |
Kt,2: N/m | 1.75 × 106 | 0.5 × 106 | |
Axle spacing | D1+ D2: m | From database | |
Speed | Vel: m/s | From database |
Damage Level | Average Axle 1 Force (kN) | Average Axle 2 Force (kN) | GVW (t) | Error in Inferred GVW |
---|---|---|---|---|
0% | 103 | 77 | 18.3 | 1.9% |
5% | 108 | 81 | 19.3 | 7.0% |
10% | 117 | 67 | 18.8 | 4.3% |
Actual | 102 | 74 | 17.9 | −0.58% |
Accurate Measurements | Measurements with Various Sources of Inaccuracy in Table 5 (% Error in Brackets *) | |||
---|---|---|---|---|
Damage level | STD (t) | Mean (t) | STD (t) | Mean (t) |
Actual | 1.86 | 8.77 | 1.94 | 9.06 |
0% | 2.07 | 8.68 | 2.27 (17%) | 8.12 (−10%) |
2.5% | 2.18 | 8.71 | 2.55 (31%) | 8.04 (−11%) |
5% | 2.71 | 8.49 | 2.89 (49%) | 7.71 (−15%) |
7.5% | 3.45 | 8.17 | 3.34 (72%) | 7.42 (−18%) |
10% | 4.14 | 7.92 | 3.88 (100%) | 7.28 (−20%) |
Number of Vehicles Per Batch | 500 |
---|---|
Batches of vehicles Velocity error (mean, std) (%) | Randomly chosen from WIM database (0%, 3%) |
Pre-existing deflection (time intervals) | After first vehicle leaves bridge 0.5–2 s |
Measurement noise | 3% |
Profile | Class A, carpet profile, the same for each batch of vehicles |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; OBrien, E.J.; McCrum, D.P. A Novel Acceleration-Based Moving Force Identification Algorithm to Detect Global Bridge Damage. Appl. Sci. 2021, 11, 7271. https://doi.org/10.3390/app11167271
Wang S, OBrien EJ, McCrum DP. A Novel Acceleration-Based Moving Force Identification Algorithm to Detect Global Bridge Damage. Applied Sciences. 2021; 11(16):7271. https://doi.org/10.3390/app11167271
Chicago/Turabian StyleWang, Shuo, Eugene J. OBrien, and Daniel P. McCrum. 2021. "A Novel Acceleration-Based Moving Force Identification Algorithm to Detect Global Bridge Damage" Applied Sciences 11, no. 16: 7271. https://doi.org/10.3390/app11167271
APA StyleWang, S., OBrien, E. J., & McCrum, D. P. (2021). A Novel Acceleration-Based Moving Force Identification Algorithm to Detect Global Bridge Damage. Applied Sciences, 11(16), 7271. https://doi.org/10.3390/app11167271