3D Modelling of the Scattering of the Fundamental Anti-Symmetric Lamb Mode (A0) Propagating within a Point-Impacted Transverse-Isotropic Composite Plate
Abstract
:1. Introduction
2. Composite Plate and Material Characterization
3. Impact Damage Setup and Ultrasonic C-Scan
4. Impact Damage Shape and Modeling in 3D-FE Model
5. 3D FE Model and Schematic of the Problem
6. Interaction of A0 Mode with Impact Damage and Comparison between Numerical Predictions and Experiment
7. Influence of the Damage Depth and Size on the Scattering Directivity Pattern
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Forintos, N.; Czigany, T. Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers—A short review. Compos. Part B Eng. 2019, 162, 331–343. [Google Scholar] [CrossRef]
- Abbas, S.; Li, F.; Qiu, J. A Review on SHM Techniques and Current Challenges for Characteristic Investigation of Damage in Composite Material Components of Aviation Industry. Mater. Perform. Charact. 2018, 7, 224–258. [Google Scholar] [CrossRef]
- Bar-Cohen, Y.; Mal, A.; Lih, S.S.; Chang, Z. Composite materials stiffness determination and defects characterization using enhanced leaky Lamb dispersion data acquisition method. Proc. SPIE Nondestruct. Eval. Aging Aircr. Airpt. Aerosp. Hardw. III 1999, 3586, 250–255. [Google Scholar]
- Seale, M.D.; Madaras, E.I. Ultrasonic measurements of stiffness in thermal– mechanically fatigued IM7/5260 composites. J. Mater. Eng. Perform. 1999, 8, 429–436. [Google Scholar] [CrossRef]
- Basri, R.; Chiu, W. Numerical analysis on the interaction of guided Lamb waves with a local elastic stiffness reduction in quasi-isotropic composite plate structures. Compos. Struct. 2004, 66, 87–99. [Google Scholar] [CrossRef]
- Kundu, T.; Das, S.; Martin, S.A.; Jata, K.V. Locating point of impact in anisotropic fiber reinforced composite plates. Ultrasonics 2008, 48, 193–201. [Google Scholar] [CrossRef]
- Hajzargerbashi, T.; Kundu, T.; Bland, S. An improved algorithm for detecting point of impact in anisotropic inhomogeneous plates. Ultrasonics 2011, 51, 317–324. [Google Scholar] [CrossRef]
- Park, B.; Sohn, H.; Olson, S.E.; DeSimio, M.P.; Brown, K.S.; Derriso, M.M. Impact localization in complex structures using laser-based time reversal. Struct. Health Monit. 2012, 11, 577–588. [Google Scholar] [CrossRef]
- Fromme, P.; Rougé, C. Directivity of guided ultrasonic wave scattering at notches and cracks. J. Phys. Conf. Ser. 2011, 269, 012018. [Google Scholar] [CrossRef]
- Moreau, L.; Caleap, M.; Velichko, A.; Wilcox, P.D. Scattering of guided waves by flat-bottomed cavities with irregular shapes. Wave Motion 2012, 49, 375–387. [Google Scholar] [CrossRef]
- Moreau, L.; Caleap, M.; Velichko, A.; Wilcox, P.D. Scattering of guided waves by through-thickness cavities with irregular shapes. Wave Motion 2011, 48, 586–602. [Google Scholar] [CrossRef]
- Caminero, M.A.; García-Moreno, I.; Rodríguez, G.P.; Chacón, J.M. Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites. Compos. Part B Eng. 2019, 165, 131–142. [Google Scholar] [CrossRef]
- Gama, B.A.; Gillespie, J.W. Finite element modeling of impact, damage evolution and penetration of thick-section composites. Int. J. Impact Eng. 2011, 38, 181–197. [Google Scholar] [CrossRef]
- Ng, C.-T.; Veidt, M.; Rose, L.; Wang, C.-H. Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates. J. Sound Vib. 2012, 331, 4870–4883. [Google Scholar] [CrossRef] [Green Version]
- de Luca, A.; Perfetto, D.; de Fenza, A.; Petrone, G.; Caputo, F. Guided wave SHM system for damage detection in complex composite structure. Theor. Appl. Fract. Mech. 2020, 105, 102408. [Google Scholar] [CrossRef]
- Ng, C.-T.; Veidt, M. Scattering of the fundamental anti-symmetric Lamb wave at delaminations in composite laminates. J. Acoust. Soc. Am. 2011, 129, 1288. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Cawley, P. The interaction of Lamb waves with delamination in composite laminates. J. Acoust. Soc. Am. 1993, 94, 2240–2246. [Google Scholar] [CrossRef]
- Hayashi, T.; Kawashima, K. Multiple reflections of Lamb waves at a delamination. Ultrasonics 2002, 40, 193–197. [Google Scholar] [CrossRef]
- Cegla, F.B.; Rohde, A.; Veidt, M. Analytical prediction and experimental measurement for mode conversion and scattering of plate waves at non-symmetric circular blind holes in isotropic plate. Wave Motion 2008, 45, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Moreau, L.; Castaings, M. The use of an orthogonality relation for reducing the size of finite element models for 3D guided waves scatter- ing problems. Ultrasonics 2008, 48, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Cantwell, W.; Morton, J. Impact perforation of carbon fiber reinforced plastic. Compos. Sci. Technol. 1990, 38, 119. [Google Scholar] [CrossRef]
- Mines, R.A.W.; Roach, A.M.; Jones, N. High velocity perforation behaviour or polymer composite laminates. Int. J. Impact Eng. 1999, 22, 561. [Google Scholar] [CrossRef]
- Mitrevski, T.; Marshall, I.H.; Thomson, R. The influence of impactor shape on the damage to composite laminates. Compos. Struct. 2006, 76, 116–122. [Google Scholar] [CrossRef]
- Liu, D. Impact induced delamination- A view of bending stiffness mismatching. J. Compos. Mater. 1988, 22, 674–792. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.C.; Eaton, M.J.; Marks, R.; Clarke, A.; Featherston, C.A.; Kawashita, L.F.; Hallett, S.R. An integrated numerical model for investigating guided waves in impact-damaged composite laminates. Compos. Struct. 2017, 176, 945–960. [Google Scholar] [CrossRef] [Green Version]
- González, E.V.; Maimí, P.; Camanho, P.P.; Turon, A.; Mayugo, J.A. Simulation of drop- weight impact and compression after impact tests on composite laminates. Compos. Struct 2012, 94, 3364–3378. [Google Scholar] [CrossRef]
- Feng, D.; Aymerich, F. Finite element modelling of damage induced by low-velocity impact on composite laminates. Compos. Struct. 2014, 108, 161–171. [Google Scholar] [CrossRef]
- Sun, X.; Wisnom, M.; Hallett, S. Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 2—Numerical simulation. Compos. Struct. 2016, 136, 727–742. [Google Scholar] [CrossRef] [Green Version]
- Ammari, H.; Zhang, H. SIAM. J. Math. Anal. 2017, 49, 3252. [Google Scholar]
- Leroy, V.; Strybulevych, A.; Page, J.H.; Scanlon, M.G. Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers. Phys. Rev. E 2011, 83, 046605. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.S.; Skvortsov, A.; MacGillivray, I.; Kessissoglou, N. Sound scattering by a bubble metasurface. Phys. Rev. B 2020, 102, 214308. [Google Scholar] [CrossRef]
- Sharma, G.S.; Skvortsov, A.; MacGillivray, I.; Kessissoglou, N. On superscattering of sound waves by a lattice of disk-shaped cavities in a soft material. Appl. Phys. Lett. 2020, 116, 041602. [Google Scholar] [CrossRef]
- Singh, D.; El Guerjouma, R.; Bentahar, M. Interaction of Fundamental Lamb Modes with a Point Impact Damaged Zone in Composite Plates. In Proceedings of the Acoustics 2012 Nantes Conference, Nantes, France, 23–27 April 2012. [Google Scholar]
- Ke, W.; Castaings, M.; Bacon, C. 3D finite element simulations of an air-coupled ultrasonic NDT system. NDT E Int. 2009, 42, 524–533. [Google Scholar] [CrossRef]
- Deng, P.; Saito, O.; Okabe, Y.; Soejima, H. Simplified modeling method of impact damage for numerical simulation of T Lamb wave propagation in quasi-isotropic composite structures. Compos. Struct. 2020, 243, 112150. [Google Scholar] [CrossRef]
- Sjoblom, P.O.; Hartness, J.T.; Cordell, T.M. On low-velocity impact testing of composite materials. Compos. Mater. 1988, 22, 30–52. [Google Scholar] [CrossRef]
- Tan, K.T.; Watanabe, N.; Iwahori, Y. X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos. Part B Eng. 2011, 42, 874–884. [Google Scholar] [CrossRef]
- Lee, S.M.; Cheon, J.S.; Im, Y.T. Experimental and numerical study of the impact behavior of SMC plates. Compos. Struct. 1999, 47, 551–561. [Google Scholar] [CrossRef]
- Zhou, G.; Lloyd, J.C.; McGuirk, J.J. Experimental evaluation of geometric factors affecting damage mechanisms in carbon/epoxy plates. Compos. Part A Appl. S 2001, 32, 71. [Google Scholar] [CrossRef]
- Shyr, T.; Pan, Y. Impact resistance and damage characteristics of composite laminates. Compos. Struct. 2003, 62, 193. [Google Scholar] [CrossRef]
- Talreja, R.; Phan, N. Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage. Compos. Struct. 2019, 219, 1–7. [Google Scholar] [CrossRef]
- Castaings, M.; Singh, D.; Viot, P. Sizing of impact damages in composite materials using ultrasonic guided waves. NDT E Int. 2012, 46, 22–31. [Google Scholar] [CrossRef]
- COMSOL, User’s Guide. Version 3.5a by COMSOL AB 2008. Available online: http://www.comsol.com/ (accessed on 23 February 2012).
- Leckey, C.A.; Wheeler, K.R.; Hafiychuk, V.N.; Hafiychuk, H.; Timuçin, D.A. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment. Ultrasonics 2018, 84, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Drozdz, M.; Moreau, L.; Castaings, M.; Lowe, M.; Cawley, P. Efficient Numerical Modelling of Absorbing Regions for Boundaries of Guided Waves Problems. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2006; p. 126. [Google Scholar]
- Murat, B.I.S.; Khalili, P.; Fromme, P. Scattering of guided waves at delaminations in composite plates. J. Acoust. Soc. Am. 2016, 139, 3044–3052. [Google Scholar] [CrossRef]
- Richard, B.; Timothy, J.; Dodwell, R.T.; Haftka, K.N.H.; Kim, T.; Kynaston, S.; Scheichl, R. Uncertainty Quantification of Composite Structures with Defects using Multilevel Monte Carlo Simulations. In Proceedings of the 17th AIAA Non-Deterministic Approaches Conference, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Melchers, R.E. Structural Reliability Analysis and Prediction; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Dodwell, T.; Butler, R.; Hunt, G. Out-of-plane ply wrinkling defects during consolidation over an external radius. Compos. Sci. Technol. 2014, 105, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Rhead, A.T.; Dodwell, T.J.; Butler, R. The effect of tow gaps on compression after impact strength of robotically laminated structures. Comput. Mater. Contin. 2013, 35, 1–16. [Google Scholar]
- Li, Y.-W.; Elishakoff, I.; Starnes, J.H.; Bushnell, D. Effect of the thickness variation and initial imperfection on buckling of composite cylindrical shells: Asymptotic analysis and numerical results by BOSOR4 and PANDA2. Int. J. Solids Struct. 1997, 34, 3755–3767. [Google Scholar] [CrossRef]
- Chiachio, M.; Chiachio, J.; Rus, G. Reliability in composites—A selective review and survey of current development. Compos. Part B Eng. 2012, 43, 902–913. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, H.; Rafiee, R.; Zhuang, X.; Muthu, J.; Rabczuk, T. Uncertainties propagation in metamodel-based probabilistic op- timization of CNT/polymer composite structure using stochastic multi-scale modeling. Comput. Mater Sci. 2014, 85, 295–305. [Google Scholar] [CrossRef]
- Dey, S.; Mukhopadhyay, T.; Adhikari, S. Metamodel based high-fidelity stochastic analysis of composite laminates: A concise review with critical comparative assessment. Compos. Struct. 2017, 171, 227–250. [Google Scholar] [CrossRef] [Green Version]
- Conceição, A.C.; Hoffbauer, L.N. Reliability-based, design optimization and uncertainty quantification for optimal conditions of composite structures with non-linear behavior. Eng. Struct. 2017, 153, 479–490. [Google Scholar] [CrossRef]
- Dey, S.; Mukhopadhyay, T.; Sahu, S.; Li, G.; Rabitz, H.; Adhikari, S. Thermal uncertainty quantification in frequency responses of laminated composite plates. Compos. Part B Eng. 2015, 80, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Das Neves Carneiro, G.; Antonio, C.C. A RBRDO approach based on structural robustness and imposed reliability level. Struct. Multidiscip. Optim. 2017, 57, 2411–2429. [Google Scholar] [CrossRef]
- Das Neves Carneiro, G.; Antonio, C.C. Robustness and reliability of composite struc- tures: Effects of different sources of uncertainty. Int. J. Mech. Mater Des. 2017, 15, 93–107. [Google Scholar] [CrossRef]
- Peng, X.; Li, D.; Wu, H.; Liu, Z.; Li, J.; Jiang, S.; Tan, J. Uncertainty analysis of composite laminated plate with data-driven T polynomial chaos expansion method under insufficient input data of uncertain parameters. Compos. Struct. 2019, 209, 625–633. [Google Scholar] [CrossRef]
ρ (g/cm3) | C11 (GPa) | C22 (GPa) | C33 (GPa) | C12 (GPa) | C13 (GPa) | C23 (GPa) | C44 (GPa) | C55 (GPa) | C66 (GPa) |
---|---|---|---|---|---|---|---|---|---|
1.55 ± 0.05 | 52.4 ± 2% | 12.6 ± 2% | 52.4 ± 2% | 3.1 ± 2% | 17.8 ± 2% | 3.1 ± 2% | 3.7 ± 2% | 17.3 ± 2% | 3.7 ± 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, D.; Bentahar, M.; Mechri, C.; El Guerjouma, R. 3D Modelling of the Scattering of the Fundamental Anti-Symmetric Lamb Mode (A0) Propagating within a Point-Impacted Transverse-Isotropic Composite Plate. Appl. Sci. 2021, 11, 7276. https://doi.org/10.3390/app11167276
Singh D, Bentahar M, Mechri C, El Guerjouma R. 3D Modelling of the Scattering of the Fundamental Anti-Symmetric Lamb Mode (A0) Propagating within a Point-Impacted Transverse-Isotropic Composite Plate. Applied Sciences. 2021; 11(16):7276. https://doi.org/10.3390/app11167276
Chicago/Turabian StyleSingh, Dilbag, Mourad Bentahar, Charfeddine Mechri, and Rachid El Guerjouma. 2021. "3D Modelling of the Scattering of the Fundamental Anti-Symmetric Lamb Mode (A0) Propagating within a Point-Impacted Transverse-Isotropic Composite Plate" Applied Sciences 11, no. 16: 7276. https://doi.org/10.3390/app11167276
APA StyleSingh, D., Bentahar, M., Mechri, C., & El Guerjouma, R. (2021). 3D Modelling of the Scattering of the Fundamental Anti-Symmetric Lamb Mode (A0) Propagating within a Point-Impacted Transverse-Isotropic Composite Plate. Applied Sciences, 11(16), 7276. https://doi.org/10.3390/app11167276