Numerical Simulation of Enhanced Photoacoustic Generation and Wavefront Shaping by a Distributed Laser Array
Abstract
:1. Introduction
2. Theoretical Model and Simulation
2.1. Numerical Simulation
2.2. Solid Heat Transfer
2.3. Solid Mechanics
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Xu, M.; Wang, L.V. Photoacoustic Imaging in Biomedicine. Rev. Sci. Instrum. 2006, 77, 41101. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Xu, B.; Ni, X.; Lu, J. Numerical Simulation of Laser-Generated Ultrasonic Waves in Layered Plates. J. Phys. D Appl. Phys. 2004, 37, 2364–2370. [Google Scholar] [CrossRef]
- Pitarresi, G.; Patterson, E.A. A Review of the General Theory of Thermoelastic Stress Analysis. J. Strain Anal. Eng. Des. 2003, 38, 405–417. [Google Scholar] [CrossRef]
- Ma, R.; Taruttis, A.; Ntziachristos, V.; Razansky, D. Multispectral Optoacoustic Tomography (MSOT) Scanner for Whole-Body Small Animal Imaging. Opt. Express 2009, 17, 21414. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Rockwell, B.A.; Marshall, W.J.; Aldrich, R.C.; Zimmerman, S.A.; Rockwell, R.J. A Procedure for Multiple-Pulse Maximum Permissible Exposure Determination under the Z136.1-2000 American National Standard for Safe Use of Lasers. J. Laser Appl. 2001, 13, 134–140. [Google Scholar] [CrossRef]
- Hajireza, P.; Shi, W.; Bell, K.; Paproski, R.J.; Zemp, R.J. Non-Interferometric Photoacoustic Remote Sensing Microscopy. Light Sci. Appl. 2017, 6, e16278. [Google Scholar] [CrossRef]
- Cao, Y.; Hui, J.; Kole, A.; Wang, P.; Yu, Q.; Chen, W.; Sturek, M.; Cheng, J.X. High-Sensitivity Intravascular Photoacoustic Imaging of Lipid-Laden Plaque with a Collinear Catheter Design. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Murray, T.W.; Balogun, O. High-Sensitivity Laser-Based Acoustic Microscopy Using a Modulated Excitation Source. Appl. Phys. Lett. 2004, 85, 2974–2976. [Google Scholar] [CrossRef]
- Huang, J.; Krishnaswamy, S.; Achenbach, J.D. Laser Generation of Narrow-band Surface Waves. J. Acoust. Soc. Am. 1992, 92, 2527–2531. [Google Scholar] [CrossRef]
- Clark, M.; Sharples, S.D.; Somekh, M.G. Diffractive Acoustic Elements for Laser Ultrasonics. J. Acoust. Soc. Am. 2000, 107, 3179–3185. [Google Scholar] [CrossRef]
- Sharples, S.D.; Clark, M.; Somekh, M.G. All-Optical Adaptive Scanning Acoustic Microscope. Ultrasonics 2003, 41, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Stratoudaki, T.; Clark, M.; Somekh, M.; Arca, A. CHeap Optical Transducers (CHOTs) for Generation and Detection of Longitudinal Waves. In Proceedings of the IEEE International Ultrasonics Symposium, IUS, Dresden, Germany, 7–10 October 2012; pp. 961–964. [Google Scholar]
- Stratoudaki, T.; Clark, M.; Wilcox, P.D. Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method. Opt Express. 2016, 24, 21921–21938. [Google Scholar] [CrossRef] [Green Version]
- Pieris, D.; Stratoudaki, T.; Javadi, Y.; Lukacs, P.; Catchpole-Smith, S.; Wilcox, P.D.; Clare, A.; Clark, M. Laser Induced Phased Arrays (LIPA) to Detect Nested Features in Additively Manufactured Components. Mater. Des. 2020, 187, 108412. [Google Scholar] [CrossRef]
- Jarzynski, J.; Berthelot, Y.H. The Use of Optical Fibers to Enhance the Laser Generation of Ultrasonic Waves. J. Acoust. Soc. Am. 1989, 85, 158–162. [Google Scholar] [CrossRef]
- Noroy, M.H.; Royer, D.; Fink, M.A. Shear-Wave Focusing with a Laser-Ultrasound Phased-Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1995, 42, 981–988. [Google Scholar] [CrossRef]
- Scott Steckenrider, J.; Murray, T.W.; Wagner, J.W.; Deaton, J.B. Sensitivity Enhancement in Laser Ultrasonics Using a Versatile Laser Array System. J. Acoust. Soc. Am. 1995, 97, 273–279. [Google Scholar] [CrossRef]
- Murray, T.W.; Deaton, J.B.; Wagner, J.W. Experimental Evaluation of Enhanced Generation of Ultrasonic Waves Using an Array of Laser Sources. Ultrasonics 1996, 34, 69–77. [Google Scholar] [CrossRef]
- Hopko, S.N.; Ume, I.C.; Erdahl, D.S. Development of a Flexible Laser Ultrasonic Probe. J. Manuf. Sci. Eng. Trans. ASME 2002, 124, 351–357. [Google Scholar] [CrossRef]
- Mi, B.; Ume, C. Real-Time Weld Penetration Depth Monitoring with Laser Ultrasonic Sensing System. J. Manuf. Sci. Eng. Trans. ASME 2006, 128, 280–286. [Google Scholar] [CrossRef]
- Pei, C.; Demachi, K.; Fukuchi, T.; Koyama, K.; Uesaka, M. Cracks Measurement Using Fiber-Phased Array Laser Ultrasound Generation. J. Appl. Phys. 2013, 113, 163101. [Google Scholar] [CrossRef]
- Besson, A.; Carrillo, R.E.; Bernard, O.; Wiaux, Y.; Thiran, J.P. Compressed delay-and-sum beamforming for ultrafast ultrasound imaging. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2509–2513. [Google Scholar] [CrossRef] [Green Version]
- Holfort, I.K.; Gran, F.; Jøensen, J.A. Broadband minimum variance beamforming for ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq. Control 2009, 56, 314–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capon, J. High-Resolution Frequency-Wavenumber Spectrum Analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef] [Green Version]
- Von Ramm, O.T.; Smith, S.W. Beam Steering with Linear Arrays. IEEE Trans. Biomed. Eng. 1983, BME-30, 438–452. [Google Scholar] [CrossRef] [PubMed]
- Wooh, S.C.; Shi, Y. Simulation study of the beam steering characteristics for linear phased arrays. J. Nondestruct. Eval. 1999, 18, 39–57. [Google Scholar] [CrossRef]
- Guan, J.; Shen, Z.; Ni, X.; Wang, J.; Lu, J.; Xu, B. Numerical Simulation of the Reflected Acoustic Wave Components in the near Field of Surface Defects. J. Phys. D Appl. Phys. 2006, 39, 1237–1243. [Google Scholar] [CrossRef]
- Kalenskii, A.V.; Zvekov, A.A.; Aduev, B.P. The Influence of Temperature on the Spectral Dependences of Aluminum’s Optical Properties. Opt. Spectrosc. (English Transl. Opt. I Spektrosk.) 2018, 124, 501–508. [Google Scholar] [CrossRef]
- Crecraft, D.I. The Measurement of Applied and Residual Stresses in Metals Using Ultrasonic Waves. J. Sound Vib. 1967, 5, 173–192. [Google Scholar] [CrossRef]
- Al Wardany, R.; Rhazi1, J.; Ballivy, G.; Gallias, J.L.; Saleh, K. Use of Rayleigh Wave Methods to Detect Near Surface Concrete Damage R. In Proceedings of the 16th World Conference on NDT, WCNDT, Montreal, QC, Canada, 30 August–3 September 2004; Available online: https://www.ndt.net/article/wcndt2004/pdf/civil_structures/729_wardany.pdf (accessed on 17 February 2021).
- Liu, G.; Xiong, J.; Cao, Y.; Hou, R.; Zhi, L.; Xia, Z.; Liu, W.; Liu, X.; Glorieux, C.; Marsh, J.H.; et al. Visualization of Ultrasonic Wave Field by Stroboscopic Polarization Selective Imaging. Opt. Express 2020, 28, 27096. [Google Scholar] [CrossRef]
- Treeby, B.E.; Jaros, J.; Rohrbach, D.; Cox, B.T. Modelling Elastic Wave Propagation Using the K-Wave MATLAB Toolbox. In Proceedings of the IEEE International Ultrasonics Symposium, IUS, Chicago, IL, USA, 3–6 September 2014; pp. 146–149. [Google Scholar]
- Ylitalo, J. On the Signal-to-Noise Ratio of a Synthetic Aperture Ultrasound Imaging Method. Eur. J. Ultrasound 1996, 3, 277–281. [Google Scholar] [CrossRef]
j | n | Zj |
---|---|---|
1 | 1 | y |
2 | 1 | x |
3 | 2 | 2xy |
4 | 2 | −1 + 2(x2 + y2) |
5 | 2 | x2 − y2 |
6 | 3 | 3x2y − y3 |
7 | 3 | −2y + 3y(x2 + y2) |
8 | 3 | −2x + 3x(x2 + y2) |
9 | 3 | x3 − 3xy2 |
Model | Fitting Method | SSE | R-Square | RMSE |
---|---|---|---|---|
1 | 2-order polynomial | 99.88 | 0.9394 | 0.2551 |
3-order polynomial | 99.07 | 0.9399 | 0.2544 | |
4-order polynomial | 57.67 | 0.965 | 0.1944 | |
5-order polynomial | 55.95 | 0.9656 | 0.1919 | |
3-order Zernike polynomial | 99.84 | 0.9395 | 0.2553 | |
2 | 2-order polynomial | 183.5 | 0.8763 | 0.2328 |
3-order polynomial | 177.8 | 0.8802 | 0.2293 | |
4-order polynomial | 170.1 | 0.8854 | 0.2245 | |
5-order polynomial | 166.2 | 0.888 | 0.2221 | |
3-order Zernike polynomial | 180.5 | 0.8783 | 0.231 | |
3 | 2-order polynomial | 158.2 | 0.9337 | 0.2464 |
3-order polynomial | 156.2 | 0.9345 | 0.2451 | |
4-order polynomial | 68.16 | 0.9714 | 0.162 | |
5-order polynomial | 65.72 | 0.9724 | 0.1593 | |
3-order Zernike polynomial | 156.6 | 0.9343 | 0.2454 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, R.; Xu, B.; Xia, Z.; Zhang, Y.; Liu, W.; Glorieux, C.; Marsh, J.H.; Hou, L.; Liu, X.; Xiong, J. Numerical Simulation of Enhanced Photoacoustic Generation and Wavefront Shaping by a Distributed Laser Array. Appl. Sci. 2021, 11, 9497. https://doi.org/10.3390/app11209497
Hou R, Xu B, Xia Z, Zhang Y, Liu W, Glorieux C, Marsh JH, Hou L, Liu X, Xiong J. Numerical Simulation of Enhanced Photoacoustic Generation and Wavefront Shaping by a Distributed Laser Array. Applied Sciences. 2021; 11(20):9497. https://doi.org/10.3390/app11209497
Chicago/Turabian StyleHou, Ruijie, Bin Xu, Zhiying Xia, Yang Zhang, Weiping Liu, Christ Glorieux, John H. Marsh, Lianping Hou, Xuefeng Liu, and Jichuan Xiong. 2021. "Numerical Simulation of Enhanced Photoacoustic Generation and Wavefront Shaping by a Distributed Laser Array" Applied Sciences 11, no. 20: 9497. https://doi.org/10.3390/app11209497
APA StyleHou, R., Xu, B., Xia, Z., Zhang, Y., Liu, W., Glorieux, C., Marsh, J. H., Hou, L., Liu, X., & Xiong, J. (2021). Numerical Simulation of Enhanced Photoacoustic Generation and Wavefront Shaping by a Distributed Laser Array. Applied Sciences, 11(20), 9497. https://doi.org/10.3390/app11209497