Advances in Biomaterials for Breast Reconstruction
Abstract
:1. Introduction
2. Breast Implant
2.1. Introduction of Saline Implant
2.2. History of Silicone Gel Implant
2.3. Modification of Implant Surface Topography
2.4. Modification of Filling Material in Breast Implant
2.5. Breast Implant Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) Issues
3. Scaffold Guided Breast Tissue Engineering
3.1. Three Dimensional (3D) Bioprinting Technique for Breast Tissue Regeneration
3.2. Components of Bioink for Breast Tissue
3.2.1. Nature Derived Biomaterials
3.2.2. Synthetic Components
3.3. Immunomodulation of 3D Bioprinted Scaffold
4. Breast Fillers
4.1. Hydrophilic Gel Fillers
4.2. Hyaluronic Acid Fillers
4.3. Future Perspectives for Breast Fillers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saslow, D.; Boetes, C.; Burke, W.; Harms, S.; Leach, M.O.; Lehman, C.D.; Morris, E.; Pisano, E.; Schnall, M.; Sener, S. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J. Clin. 2007, 57, 75–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Xu, L.; Shi, W.; Zeng, F.; Zhuo, R.; Hao, X.; Fan, P. Trends of female and male breast cancer incidence at the global, regional, and national levels, 1990–2017. Breast Cancer Res. Treat. 2020, 180, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [Green Version]
- Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [PubMed] [Green Version]
- Arion, H. Retromammary prosthesis. CR Soc. Fr. Gynecol. 1965, 5, 1–20. [Google Scholar]
- Regnault, P.; Baker, T.J.; Gleason, M.C.; Gordon, H.L.; Grossman, A.R.; Lewis Jr, J.R.; Waters, W.R.; Williams, J.E. Clinical trial and evaluation of a proposed new inflatable mammary prosthesis. Plast. Reconstr. Surg. 1972, 50, 220–226. [Google Scholar] [CrossRef]
- Rees, T.D.; Guy, C.L.; Coburn, R.J.; Rees, T.D. The use of inflatable breast implants. Plast. Reconstr. Surg. 1973, 52, 609–615. [Google Scholar] [CrossRef]
- Young, V.L.; Watson, M.E. Breast implant research: Where we have been, where we are, where we need to go. Clin. Plast. Surg. 2001, 28, 451–483. [Google Scholar] [CrossRef]
- Cronin, T.D.; Brauer, R.O. Augmentation mammaplasty. Surg. Clin. North Am. 1971, 51, 441–452. [Google Scholar] [CrossRef]
- Peters, W.; Smith, D.; Lugowski, S. Failure properties of 352 explanted silicone-gel breast implants. Can. J. Plast. Surg. 1996, 4, 1–8. [Google Scholar] [CrossRef]
- Feng, L.-J.; Amini, S.B. Analysis of risk factors associated with rupture of silicone gel breast implants. Plast. Reconstr. Surg. 1999, 104, 955–963. [Google Scholar] [CrossRef]
- Weum, S.; de Weerd, L.; Kristiansen, B. Form stability of the style 410 anatomically shaped cohesive silicone gel–filled breast implant in subglandular breast augmentation evaluated with magnetic resonance imaging. Plast. Reconstr. Surg. 2011, 127, 409–413. [Google Scholar] [CrossRef]
- Winding, O.; Christensen, L.; Thomsen, J.; Nielsen, M.; Breiting, V.; Brandt, B. Silicon in human breast tissue surrounding silicone gel prostheses: A scanning electron microscopy and energy dispersive X-ray investigation of normal, fibrocystic and peri-prosthetic breast tissue. Scand. J. Plast. Reconstr. Surg. 1988, 22, 127–130. [Google Scholar] [CrossRef]
- Rudolph, R.; Abraham, J.; Vecchione, T.; Guber, S.; Woodward, M. Myofibroblasts and free silicon around breast implants. Plast. Reconstr. Surg. 1978, 62, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Argenta, L.C. Migration of silicone gel into breast parenchyma following mammary prosthesis rupture. Aesthetic Plast. Surg. 1983, 7, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, H.V.; Bartels, R.J. Rupture of a silicone bag-gel breast implant by closed compression capsulotomy: Case report. Plast. Reconstr. Surg. 1977, 59, 849–850. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Blackwell, S.J.; Lewis, S.R. Migration of silicone gel after the” squeeze technique” to rupture a contracted breast capsule. Case report. Plast. Reconstr. Surg. 1978, 61, 277–280. [Google Scholar] [CrossRef]
- Thomsen, J.L.; Christensen, L.; Nielsen, M.; Brandt, B.; Breiting, V.B.; Felby, S.; Nielsen, E. Histologic changes and silicone concentrations in human breast tissue surrounding silicone breast prostheses. Plast. Reconstr. Surg. 1990, 85, 38–41. [Google Scholar] [CrossRef]
- Van Nunen, S.A.; Gatenby, P.A.; Basten, A. Post-mammoplasty connective tissue disease. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1982, 25, 694–697. [Google Scholar] [CrossRef]
- Spiera, H. Scleroderma after silicone augmentation mammoplasty. JAMA 1988, 260, 236–238. [Google Scholar] [CrossRef]
- Endo, L.P.; Edwards, N.L.; Longley, S.; Corman, L.C.; Panush, R.S. Silicone and Rheumatic Diseases. Semin. Arthritis Rheum. 1987, 17, 112–118. [Google Scholar] [CrossRef]
- Kessler, D.A. The basis of the FDA’s decision on breast implants. N. Engl. J. Med. 1992, 326, 1713–1715. [Google Scholar] [CrossRef]
- Cohen, I.K. Impact of the FDA ban on silicone breast implants. J. Surg. Oncol. 1994, 56, 1. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, G.D. The breast implant controversy: A clash of ethics and law. JAMA 1993, 270, 2608. [Google Scholar] [CrossRef]
- Handel, N.; Wellisch, D.; Silverstein, M.; Jensen, J.A.; Waisman, E. Knowledge, concern, and satisfaction among augmentation mammaplasty patients. Ann. Plast. Surg. 1993, 30, 13–20; discussion 20. [Google Scholar] [CrossRef] [PubMed]
- Stombler, R.E. Breast implants and the FDA: Past, present, and future. Plast. Surg. Nurs. 1993, 13, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.C. The silicone controversy—when will science prevail? N. Engl. J. Med. 1992, 326, 1696–1698. [Google Scholar] [CrossRef] [PubMed]
- Guidoin, R.; Rolland, C.; Fleury, D.; Charara, J.; Marceau, D.; Bronskill, M.; Cardou, A.; King, M.; Lessard, R. Physical characterization of unimplanted gel filled breast implants. Should old standards be revisited? ASAIO J. Am. Soc. Artif. Intern. Organs 1994, 40, 943–958. [Google Scholar] [CrossRef]
- Cunningham, B. The Mentor study on contour profile gel silicone MemoryGel breast implants. Plast. Reconstr. Surg. 2007, 120, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, G.P.; Van Natta, B.W.; Murphy, D.K.; Slicton, A.; Bengtson, B.P. Natrelle style 410 form-stable silicone breast implants: Core study results at 6 years. Aesthet. Surg. J. 2012, 32, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Stevens, W.G.; Harrington, J.; Alizadeh, K.; Berger, L.; Broadway, D.; Hester, T.R.; Kress, D.; d’Incelli, R.; Kuhne, J.; Beckstrand, M. Five-year follow-up data from the US clinical trial for Sientra’s US Food and Drug Administration–approved Silimed® brand round and shaped implants with high-strength silicone gel. Plast. Reconstr. Surg. 2012, 130, 973–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, D.J.; Foo, I.T.; Sharpe, D.T. Textured or smooth implants for breast augmentation? A prospective controlled trial. Br. J. Plast. Surg. 1991, 44, 444–448. [Google Scholar] [CrossRef]
- Calobrace, M.B.; Stevens, W.G.; Capizzi, P.J.; Cohen, R.; Godinez, T.; Beckstrand, M. Risk factor analysis for capsular contracture: A 10-year Sientra study using round, smooth, and textured implants for breast augmentation. Plast. Reconstr. Surg. 2018, 141, 20S–28S. [Google Scholar] [CrossRef]
- Wong, C.-H.; Samuel, M.; Tan, B.-K.; Song, C. Capsular contracture in subglandular breast augmentation with textured versus smooth breast implants: A systematic review. Plast. Reconstr. Surg. 2006, 118, 1224–1236. [Google Scholar] [CrossRef]
- Stevens, W.G.; Nahabedian, M.Y.; Calobrace, M.B.; Harrington, J.L.; Capizzi, P.J.; Cohen, R.; d’Incelli, R.C.; Beckstrand, M. Risk factor analysis for capsular contracture: A 5-year Sientra study analysis using round, smooth, and textured implants for breast augmentation. Plast. Reconstr. Surg. 2013, 132, 1115–1123. [Google Scholar] [CrossRef]
- Brohim, R.M.; Foresman, P.A.; Hildebrandt, P.K.; Rodeheaver, G.T. Early tissue reaction to textured breast implant surfaces. Ann. Plast. Surg. 1992, 28, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Abramo, A.C.; De Oliveira, V.R.; Ledo-Silva, M.C.; De Oliveira, E.L. How texture-inducing contraction vectors affect the fibrous capsule shrinkage around breasts implants? Aesthetic Plast. Surg. 2010, 34, 555–560. [Google Scholar] [CrossRef]
- Handel, N.; Jensen, J.A.; Black, Q.; Waisman, J.R.; Silverstein, M.J. The fate of breast implants: A critical analysis of complications and outcomes. Plast. Reconstr. Surg. 1995, 96, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Barone, F.E.; Perry, L.; Keller, T.; Maxwell, G.P. The biomechanical and histopathologic effects of surface texturing with silicone and polyurethane in tissue implantation and expansion. Plast. Reconstr. Surg. 1992, 90, 77–86. [Google Scholar] [CrossRef]
- Handel, N.; Silverstein, M.J.; Jensen, J.A.; Collins, A.; Zierk, K. Comparative experience with smooth and polyurethane breast implants using the Kaplan-Meier method of survival analysis. Plast. Reconstr. Surg. 1991, 88, 475–481. [Google Scholar] [CrossRef]
- Vazquez, G.; Pellon, A. Polyurethane-coated silicone gel breast implants used for 18 years. Aesthetic Plast. Surg. 2007, 31, 330–336. [Google Scholar] [CrossRef]
- Handel, N.; Gutierrez, J. Long-term safety and efficacy of polyurethane foam-covered breast implants. Aesthet. Surg. J. 2006, 26, 265–274. [Google Scholar] [CrossRef]
- de la Peña-Salcedo, J.A.; Soto-Miranda, M.A.; Lopez-Salguero, J.F. Back to the future: A 15-year experience with polyurethane foam-covered breast implants using the partial-subfascial technique. Aesthetic Plast. Surg. 2012, 36, 331–338. [Google Scholar] [CrossRef]
- Duxbury, P.J.; Harvey, J.R. Systematic review of the effectiveness of polyurethane-coated compared with textured silicone implants in breast surgery. J. Plast. Reconstr. Aesthetic Surg. 2016, 69, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Hakelius, L.; Ohlsén, L. A clinical comparison of the tendency to capsular contracture between smooth and textured gel-filled silicone mammary implants. Plast. Reconstr. Surg. 1992, 90, 247–254. [Google Scholar] [CrossRef]
- Ersek, R.A. Rate and incidence of capsular contracture: A comparison of smooth and textured silicone double-lumen breast prostheses. Plast. Reconstr. Surg. 1991, 87, 879–884. [Google Scholar] [CrossRef]
- Collis, N.; Coleman, D.; Foo, I.T.; Sharpe, D.T. Ten-year review of a prospective randomized controlled trial of textured versus smooth subglandular silicone gel breast implants. Plast. Reconstr. Surg. 2000, 106, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.; Holinka, M.; Moucha, C.S. Antibacterial Surface Treatment for Orthopaedic Implants. Int. J. Mol. Sci. 2014, 15, 13849–13880. [Google Scholar] [CrossRef] [Green Version]
- Barr, S.; Hill, E.; Bayat, A. Current implant surface technology: An examination of their nanostructure and their influence on fibroblast alignment and biocompatibility. Eplasty 2009, 9, e22. [Google Scholar] [PubMed]
- Sforza, M.; Zaccheddu, R.; Alleruzzo, A.; Seno, A.; Mileto, D.; Paganelli, A.; Sulaiman, H.; Payne, M.; Maurovich-Horvat, L. Preliminary 3-year evaluation of experience with SilkSurface and VelvetSurface motiva silicone breast implants: A single-center experience with 5813 consecutive breast augmentation cases. Aesthet. Surg. J. 2018, 38, S62–S73. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Kim, Y.; An, T.; Kang, S.; Ha, C.; Wufue, M.; Kim, Y.; Jeon, B.; Kim, S.; Kim, J.; et al. Covalently grafted 2-methacryloyloxyethyl phosphorylcholine networks inhibit fibrous capsule formation around silicone breast implants in a porcine model. ACS Appl. Mater. Interfaces 2020, 12, 30198–30212. [Google Scholar] [CrossRef]
- Barnea, Y.; Hammond, D.C.; Geffen, Y.; Navon-Venezia, S.; Goldberg, K. Plasma activation of a breast implant shell in conjunction with antibacterial irrigants enhances antibacterial activity. Aesthet. Surg. J. 2018, 38, 1188–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruff, E.S.; Hirase, T.; Rude, M.J. Evaluation of antibiotic-impregnated mesh in preventing the recurrence of capsular contracture. Aesthet. Surg. J. 2019, 39, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asplund, O. Capsular contracture in silicone gel and saline-filled breast implants after reconstruction. Plast. Reconstr. Surg. 1984, 73, 270–275. [Google Scholar] [CrossRef]
- Gylbert, L.; Asplund, O.; Jurell, G. Capsular contracture after breast reconstruction with silicone-gel and saline-filled implants: A 6-year follow-up. Plast. Reconstr. Surg. 1990, 85, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B. The Mentor Core Study on Silicone MemoryGel Breast Implants. Plast. Reconstr. Surg. 2007, 120, 19S–29S. [Google Scholar] [CrossRef]
- Spear, S.L.; Heden, P. Allergan’s silicone gel breast implants. Expert Rev. Med. Devices 2007, 4, 699–708. [Google Scholar] [CrossRef]
- Kaoutzanis, C.; Winocour, J.; Unger, J.; Gabriel, A.; Maxwell, G.P. The evolution of breast implants. Semin. Plast. Surg. 2019, 33, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Brody, G.S. Silicone technology for the plastic surgeon. Clin. Plast. Surg. 1988, 15, 517–520. [Google Scholar] [CrossRef]
- Stevens, W.G.; Pacella, S.J.; Gear, A.J.; Freeman, M.E.; McWhorter, C.; Tenenbaum, M.J.; Stoker, D.A. Clinical experience with a fourth-generation textured silicone gel breast implant: A review of 1012 Mentor MemoryGel breast implants. Aesthet. Surg. J. 2008, 28, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Srinivasa, D.R.; Miranda, R.N.; Kaura, A.; Francis, A.M.; Campanale, A.; Boldrini, R.; Alexander, J.; Deva, A.K.; Gravina, P.R.; Medeiros, L.J.; et al. Global adverse event reports of breast implant-associated ALCL: An international review of 40 government authority databases. Plast. Reconstr. Surg. 2017, 139, 1029–1039. [Google Scholar] [CrossRef]
- McGuire, P.; Reisman, N.R.; Murphy, D.K. Risk Factor Analysis for Capsular Contracture, Malposition, and Late Seroma in Subjects Receiving Natrelle 410 Form-Stable Silicone Breast Implants. Plast. Reconstr. Surg. 2017, 139, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Breast Implants: Update on TGA Monitoring of Anaplastic Large Cell Lymphoma. Available online: https://www.tga.gov.au/alert/breast-implants-update-tga-monitoring-anaplastic-large-cell-lymphoma (accessed on 27 September 2016).
- The FDA Requests Allergan Voluntarily Recall Natrelle BIOCELL Textured Breast Implants and Tissue Expanders from the Market to Protect Patients: FDA Safety Communication. Available online: https://www.fda.gov/medical-devices/safety-communications/fdarequests-allergan-voluntarily-recall-natrelle-biocell-texturedbreast-implants-and-tissue (accessed on 1 July 2021).
- FDA Takes Action to Protect Patients from Risk of Certain Textured Breast Implants; Requests Allergan Voluntarily Recall Certain Breast Implants and Tissue Expanders from Market. Available online: https://www.fda.gov/news-events/press-announcements/fda-takesaction-protect-patients-risk-certain-textured-breast-implantsrequests-allergan (accessed on 1 July 2021).
- Clemens, M.W.; Medeiros, L.J.; Butler, C.E.; Hunt, K.K.; Fanale, M.A.; Horwitz, S.; Weisenburger, D.D.; Liu, J.; Morgan, E.A.; Kanagal-Shamanna, R.; et al. Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J. Clin. Oncol. 2016, 34, 160–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Comprehensive Cancer Network (NCCN). Available online: https://www.nccn.org/professionals/physician_gls/pdf/t-cell.pdf (accessed on 1 July 2021).
- Nelson, J.A.; McCarthy, C.; Dabic, S.; Polanco, T.; Chilov, M.; Mehrara, B.J.; Disa, J.J. BIA-ALCL and textured breast implants: A systematic review of evidence supporting surgical risk management strategies. Plast. Reconstr. Surg. 2021, 147, 7S–13S. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.W.; Roberts, J.; Potochny, J.D. How breast implant surface type is influenced by breast implant-associated anaplastic large cell lymphoma: A survey of the American Society of Plastic Surgeons. Ann. Plast. Surg. 2019, 82, S208–S211. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Y.; Zhang, J.; Liu, H.; Wang, J.; Liu, Q.; Zhang, Y. Three-dimensional bioprinting adipose tissue and mammary Organoids feasible for artificial breast structure regeneration. Mater. Des. 2021, 200, 109467. [Google Scholar] [CrossRef]
- Yilmaz, B.; Tahmasebifar, A.; Baran, E.T. Bioprinting technologies in tissue engineering. Adv. Biochem. Eng. Biotechnol. 2020, 171, 279–319. [Google Scholar]
- Chhaya, M.P.; Balmayor, E.R.; Hutmacher, D.W.; Schantz, J.T. Transformation of breast reconstruction via additive biomanufacturing. Sci. Rep. 2016, 6, 28030. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, M.; Bas, O.; Castro, N.J.; Schmutz, B.; Hutmacher, D.W. Additive biomanufacturing of scaffolds for breast reconstruction. Addit. Manuf. 2019, 30, 100845. [Google Scholar] [CrossRef]
- Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017, 35, 217–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unagolla, J.M.; Jayasuriya, A.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl. Mater. Today 2020, 18, 100479. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, M.; Nemati, S.; Ai, J.; Khademi, F. Multipotency expression of human adipose stem cells in filament-like alginate and gelatin derivative hydrogel fabricated through visible light-initiated crosslinking. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109808. [Google Scholar] [CrossRef]
- Cheung, H.K.; Han, T.T.; Marecak, D.M.; Watkins, J.F.; Amsden, B.G.; Flynn, L.E. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials 2014, 35, 1914–1923. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Das, S.; Jang, J.; Cho, D.W. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem. Rev. 2020, 120, 10608–10661. [Google Scholar] [CrossRef]
- Haddad, S.M.; Omidi, E.; Flynn, L.E.; Samani, A. Comparative biomechanical study of using decellularized human adipose tissues for post-mastectomy and post-lumpectomy breast reconstruction. J. Mech. Behav. Biomed. Mater. 2016, 57, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Eichler, C.; Schulz, C.; Vogt, N.; Warm, M. The use of acellular dermal matrices (ADM) in breast reconstruction: A review. Surg. Technol. Int. 2017, 31, 53–60. [Google Scholar] [PubMed]
- Kabirian, F.; Mozafari, M. Decellularized ECM-derived bioinks: Prospects for the future. Methods 2020, 171, 108–118. [Google Scholar] [CrossRef]
- Chae, M.P.; Hunter-Smith, D.J.; Murphy, S.V.; Findlay, M.W. 3D bioprinting adipose tissue for breast reconstruction. In 3D Bioprinting for Reconstructive Surgery; Thomas, D.J., Jessop, Z.M., Whitaker, I.S., Eds.; Academic Press: London, UK, 2017; pp. 305–353. [Google Scholar]
- Carrow, J.K.; Kerativitayanan, P.; Jaiswal, M.K.; Lokhande, G.; Gaharwar, A. Polymers for Bioprinting. In Essentials of 3D Biofabrication and Translation; Atala, A., Yoo, J.J., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 229–248. [Google Scholar]
- Naderi, N.; Griffin, M.F.; Mosahebi, A.; Butler, P.E.; Seifalian, A.M. Adipose derived stem cells and platelet rich plasma improve the tissue integration and angiogenesis of biodegradable scaffolds for soft tissue regeneration. Mol. Biol. Rep. 2020, 47, 2005–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, W.; Kim, M.S.; Park, D.B.; Joo, O.Y.; Lee, W.J.; Roh, T.S.; Sung, H.J. Three-dimensionally printed breast reconstruction devices facilitate nanostructure surface-guided healthy lipogenesis. ACS Biomater. Sci. Eng. 2019, 5, 4962–4969. [Google Scholar] [CrossRef]
- Fuoco, T.; Ahlinder, A.; Jain, S.; Mustafa, K.; Finne-Wistrand, A. Poly(ε-caprolactone-co-p-dioxanone): A degradable and printable copolymer for pliable 3d scaffolds fabrication toward adipose tissue regeneration. Biomacromolecules 2020, 21, 188–198. [Google Scholar] [CrossRef]
- Poh, P.S.; Hege, C.; Chhaya, M.P.; Balmayor, E.R.; Foehr, P.; Burgkart, R.H.; Schantz, J.-T.; Schiller, S.M.; Schilling, A.F.; Hutmacher, D.W. Evaluation of polycaprolactone − poly-D, L-lactide copolymer as biomaterial for breast tissue engineering. Polym. Int. 2017, 66, 77–84. [Google Scholar] [CrossRef]
- Indolfi, L.; Baker, A.B.; Edelman, E.R. The role of scaffold microarchitecture in engineering endothelial cell immunomodulation. Biomaterials 2012, 33, 7019–7027. [Google Scholar] [CrossRef] [PubMed]
- Barthes, J.; Lagarrigue, P.; Riabov, V.; Lutzweiler, G.; Kirsch, J.; Muller, C.; Courtial, E.-J.; Marquette, C.; Projetti, F.; Kzhyskowska, J. Biofunctionalization of 3D-printed silicone implants with immunomodulatory hydrogels for controlling the innate immune response: An in vivo model of tracheal defect repair. Biomaterials 2021, 268, 120549. [Google Scholar] [CrossRef]
- Ozcan, U.A.; Ulus, S.; Kucukcelebi, A. Breast augmentation with Aquafilling: Complications and radiologic features of two cases. Eur. J. Plast. Surg. 2019, 42, 405–408. [Google Scholar] [CrossRef]
- Son, M.J.; Ko, K.H.; Jung, H.K.; Koh, J.E.; Park, A.Y. Complications and radiologic features of breast augmentation via injection of aquafilling gel. J. Ultrasound Med. 2018, 37, 1835–1839. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Chang, H.; Park, J.U. Complication of ruptured poly implant prothèse breast implants combined with aquafilling gel injection: A case report and literature review. Aesthetic Plast. Surg. 2019, 43, 46–52. [Google Scholar] [CrossRef]
- Jung, B.K.; Yun, I.S.; Kim, Y.S.; Roh, T.S. Complication of AQUAfilling gel injection for breast augmentation: Case report of one case and review of literature. Aesthetic Plast. Surg. 2018, 42, 1252–1256. [Google Scholar] [CrossRef] [PubMed]
- Hee Ko, K.; Kyoung Jung, H.; Young Park, A. Radiologic features of distant filler migration with inflammatory reaction following augmentation mammoplasty using aquafilling® filler. Iran J. Radiol. 2017, 14, e63468. [Google Scholar] [CrossRef] [Green Version]
- Ikizceli, T.; Cindemir, E.; Gulsen, G.; Bijan, B. Imaging findings of aquafilling gel injection for breast augmentation. Breast J. 2020, 26, 278–280. [Google Scholar] [CrossRef]
- Roh, T.S. Letter: Position Statement of Korean Academic Society of Aesthetic and Reconstructive Breast Surgery: Concerning the Use of Aquafilling(R) for Breast Augmentation. Arch. Aesthetic Plast. Surg. 2016, 22, 45–46. [Google Scholar] [CrossRef]
- Unukovych, D.; Khrapach, V.; Wickman, M.; Liljegren, A.; Mishalov, V.; Patlazhan, G.; Sandelin, K. Polyacrylamide gel injections for breast augmentation: Management of complications in 106 patients, a multicenter study. World J. Surg. 2012, 36, 695–701. [Google Scholar] [CrossRef]
- Nomoto, S.; Hirakawa, K.; Ogawa, R. Safety of copolyamide filler injection for breast augmentation. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3296. [Google Scholar] [CrossRef]
- Von Heimburg, D.; Zachariah, S.; Low, A.; Pallua, N. Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells. Plast. Reconstr. Surg. 2001, 108, 411–420; discussion 421–422. [Google Scholar] [CrossRef] [PubMed]
- Hedén, P. Update on body shaping and volume restoration: The role of hyaluronic acid. Aesthetic Plast. Surg. 2020, 44, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Chaput, B.; De Bonnecaze, G.; Chavoin, J.P.; Gangloff, D.; Garrido, I. France prohibits the use of macrolane in aesthetic breast augmentation for reasons similar to criticisms of autologous fat grafting to the breast. Aesthetic Plast. Surg. 2012, 36, 1000–1001. [Google Scholar] [CrossRef] [PubMed]
- Sue, G.R.; Seither, J.G.; Nguyen, D.H. Use of hyaluronic acid filler for enhancement of nipple projection following breast reconstruction: An easy and effective technique. JPRAS Open 2020, 23, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Hedén, P.; Olenius, M.; Tengvar, M. Macrolane for breast enhancement: 12-month follow-up. Plast. Reconstr. Surg. 2011, 127, 850–860. [Google Scholar] [CrossRef]
- Trignano, E.; Baccari, M.; Pili, N.; Serra, P.L.; Rubino, C. Complications after breast augmentation with hyaluronic acid: A case report. Gland Surg. 2020, 9, 2193–2197. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Park, J.-U.; Chang, H. Advances in Biomaterials for Breast Reconstruction. Appl. Sci. 2021, 11, 7493. https://doi.org/10.3390/app11167493
Park J-H, Park J-U, Chang H. Advances in Biomaterials for Breast Reconstruction. Applied Sciences. 2021; 11(16):7493. https://doi.org/10.3390/app11167493
Chicago/Turabian StylePark, Jun-Ho, Ji-Ung Park, and Hak Chang. 2021. "Advances in Biomaterials for Breast Reconstruction" Applied Sciences 11, no. 16: 7493. https://doi.org/10.3390/app11167493
APA StylePark, J. -H., Park, J. -U., & Chang, H. (2021). Advances in Biomaterials for Breast Reconstruction. Applied Sciences, 11(16), 7493. https://doi.org/10.3390/app11167493