Design of the High-Speed PMSG with Two Different Shaft Material Considering Overhang Effect and Mechanical Characteristics
Abstract
:1. Introduction
2. Structure of PMSG
3. High-Speed PMSG Characteristics with STS420-J2 Shaft Material
3.1. Mechanical Characteristics
3.2. Influence of Shaft Material on Electromagnetic Characteristics
4. High-Speed PMSG Characteristics with Inconel 718 Shaft Material
4.1. Electromagnetic Characteristics
4.2. Mechanical Characteristics
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qiu, H.; Tang, B.; Yu, W.; Yuan, S.; Wu, J.; Yang, C.; Cui, G. Analysis of the super high-speed permanent magnet generator under unbalanced load condition. IET Electro. Power Appl. 2017, 11, 1492–1498. [Google Scholar] [CrossRef]
- Zhang, Y.; McLoone, S.; Cao, W.; Qiu, F.; Gerada, C. Power Loss and Thermal Analysis of a MW High-Speed Permanent Magnet Synchronous Machine. IEEE Trans. Energy Convers. 2017, 32, 1468–1478. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Ham, C.; Zheng, L.; Wu, T.; Sundaram, K.; Kapat, J.; Chow, L. A Highly Efficient 200,000 RPM Permanent Magnet Motor System. IEEE Trans. Magn. 2007, 43, 2528–2530. [Google Scholar] [CrossRef]
- Paulides, J.J.H.; Jewell, G.W.; Howe, D. An Evaluation of Alternative Stator Lamination Materials for a High-Speed, 1.5 MW Permanent Magnet Generator. IEEE Trans. Magn. 2004, 40, 2041–2043. [Google Scholar] [CrossRef]
- Ede, J.D.; Zhu, Z.Q.; Howe, D. Rotor Resonances of High-Speed Permanent-Magnet Brushless Machines. IEEE Trans. Ind. Appl. 2002, 38, 1542–1548. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.K.; Joo, D.; Woo, B.C.; Jeong, Y.H.; Koo, D.H. Investigations on a Super High Speed Motor-Generator for Microturbine Applications Using Amorphous Core. IEEE Trans. Magn. 2013, 49, 4072–4075. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.; Han, B. A Loss Separation Method of a High-Speed Magnetic Levitated PMSM Based on Drag System Experiment Without Torque Meter. IEEE Trans. Ind. Electron. 2019, 66, 2976–2986. [Google Scholar] [CrossRef]
- Shin, K.H.; Bang, T.K.; Cho, H.W.; Choi, J.Y. Design and Analysis of High-Speed Permanent Magnet Synchronous Generator with Rotor Structure Considering Electromechanical Characteristics. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Du, G.; Hang, N.; He, H.; Lei, G.; Zhu, J. Parameter Design for a High-Speed Permanent Magnet Machine under Multiphysics Constraints. IEEE Trans. Energy Convers. 2020, 35, 1–11. [Google Scholar] [CrossRef]
- Gerada, D.; Mebarki, A.; Brown, N.L.; Gerada, C.; Cavagnino, A.; Boglietti, A. High-Speed Electrical Machines: Technologies, Trends, and Developments. IEEE Trans. Ind. Electron. 2014, 61, 2946–2959. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D.; Bolte, E.; Ackermann, B. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field. IEEE Trans. Magn. 1993, 29, 124–135. [Google Scholar] [CrossRef]
- Jang, S.M.; Ko, K.J.; Cho, H.W.; Choi, J.Y. Electromechanical parameters calculation of permanent magnet synchronous motor susing the transfer relations theorem. IEEE Trans. Magn. 2007, 43, 2495–2497. [Google Scholar] [CrossRef]
- Jang, G.H.; Ahn, J.H.; Kim, B.O.; Lee, D.H.; Bang, J.S.; Choi, J.Y. Design and Characteristic Analysis of a High-Speed Permanent Magnet Synchronous Motor Considering the Mechanical Structure for High-Speed and High-Head Centrifugal Pumps. IEEE Trans. Magn. 2018, 11, 1–6. [Google Scholar] [CrossRef]
- Ou, J.; Liu, Y.; Breining, P.; Gietzelt, T.; Wunsch, T.; Doppelbaure, M. Experimental Characterization and Feasibility Study on High Mechanical Strength Electrical Steels for High-Speed Motors Application. IEEE Trans. Ind. Appl. 2021, 57, 284–293. [Google Scholar] [CrossRef]
- Ahn, J.H.; Han, C.; Kim, C.W.; Choi, J.Y. Rotor Design of High-Speed Permanent Magnet Synchronous Motors Considering Rotor Magnet and Sleeve Materials. IEEE Trans. Appl. Supercond. 2018, 28, 1–4. [Google Scholar] [CrossRef]
- Zhang, F.; Du, G.; Wang, Y.; Liu, G.; Cao, W. Rotor Retaining Sleeve Design for a 1.12-MW High-Speed PM Machine. IEEE Trans. Ind. Appl. 2015, 51, 3675–3685. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, X.; Gerada, C.; Galea, M.; Gerada, D.; Li, J. Design Consideration for the Tooth Shoe Shape for High-Speed Permanent Magnet Generators. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Fang, J. Multiphysics Design and Optimization of High-Speed Permanent-Magnet Electrical Machines for Air-Blower Applications. IEEE Trans. Ind. Electron. 2016, 63, 2766–2774. [Google Scholar] [CrossRef]
- Fang, H.; Qu, R.; Li, J.; Zheng, P.; Fan, X. Rotor Design for High-Speed High-Power Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Appl. 2017, 53, 3411–3419. [Google Scholar] [CrossRef]
- Budynas, R.G. Advanced Strength and Applied Stress Analysis; McGraw-Hill Science: New York, NY, USA, 1998. [Google Scholar]
- Shin, K.H.; Jung, K.H.; Cho, H.W.; Choi, J.Y. Analytical Modeling and Experimental Verification for Electromagnetic Analysis of Tubular Linear Synchronous Machines With Axially Magnetized Permanent Magnets and Flux-Passing Iron Poles. IEEE Trans. Magn. 2018, 54, 1–6. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Rated power | 100 [kW] |
Rated speed | 36000 [rpm] |
Rated Line to Line voltage | 380 [Vrms] |
Thickness of sleeve | 4 [mm] |
Operation temperature | 180 [°C] |
Material of PM | Sm2Co17 |
Parameters | FEM Value | Experiment Value | Percentage Error |
---|---|---|---|
Output power | 103.7 [kW] | 72.2 [kW] | 30.37% |
Phase current | 155.47 [Arms] | 119.05 [Arms] | 23.42% |
L-L voltage | 385.11 [Vrms] | 349.71 [Vrms] | 9.19% |
Efficiency | 96.72 [%] | 95.62 [%] | 1.13% |
Parameters | Value |
---|---|
3D FEM | 386.96 [μH] |
Experiment (Before heat treatment) | 383.06 [μH] |
Experiment (After heat treatment) | 472.85 [μH] |
Parameters | FEM Value | Experiment Value | Percentage Error |
---|---|---|---|
Output power | 108.13 [kW] | 105.18 [kW] | 2.72% |
Phase current | 150.9 [Arms] | 148.04 [Arms] | 1.89% |
L-L voltage | 418.3 [Vrms] | 410.1 [Vrms] | 1.96% |
Efficiency | 96.74 [%] | 96.24 [%] | 0.5% |
Phase resistance | 6.15 [mΩ] | 6.14 [mΩ] | 0.16% |
Inductance | 161.2 [μH] | 172.2 [μH] | 6.82% |
Materials | Yield Strength [Mpa] | Poisson’s Ratio | Cost [kg/USD] |
---|---|---|---|
Inconel 718 | 1100 | 0.284 | 71.4 |
STS420-J2 | 740 | 0.27 | 5.0 |
Sm2Co17 (YXG-30) | 35 | 0.24 | 97.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-I.; Bang, T.-K.; Lee, H.-K.; Woo, J.-H.; Nah, J.; Choi, J.-Y. Design of the High-Speed PMSG with Two Different Shaft Material Considering Overhang Effect and Mechanical Characteristics. Appl. Sci. 2021, 11, 7670. https://doi.org/10.3390/app11167670
Lee J-I, Bang T-K, Lee H-K, Woo J-H, Nah J, Choi J-Y. Design of the High-Speed PMSG with Two Different Shaft Material Considering Overhang Effect and Mechanical Characteristics. Applied Sciences. 2021; 11(16):7670. https://doi.org/10.3390/app11167670
Chicago/Turabian StyleLee, Jeong-In, Tae-Kyoung Bang, Hoon-Ki Lee, Jong-Hyeon Woo, Junghyo Nah, and Jang-Young Choi. 2021. "Design of the High-Speed PMSG with Two Different Shaft Material Considering Overhang Effect and Mechanical Characteristics" Applied Sciences 11, no. 16: 7670. https://doi.org/10.3390/app11167670
APA StyleLee, J. -I., Bang, T. -K., Lee, H. -K., Woo, J. -H., Nah, J., & Choi, J. -Y. (2021). Design of the High-Speed PMSG with Two Different Shaft Material Considering Overhang Effect and Mechanical Characteristics. Applied Sciences, 11(16), 7670. https://doi.org/10.3390/app11167670