PDCA 4.0: A New Conceptual Approach for Continuous Improvement in the Industry 4.0 Paradigm
Abstract
:Featured Application
Abstract
1. Introduction
2. Lean Manufacturing and Continuous Improvement
2.1. Problem Identification and Mapping
2.2. Problem Solving
2.3. Challenges and Limitations
3. Industry 4.0 and Continuous Improvement
3.1. Industry 4.0 Design Principles and Technological Concepts
3.2. Approaches towards the Applicability of I4.0 to LM/CI
3.2.1. Conceptual Approaches
3.2.2. Empirical Approaches
3.2.3. Practical Approaches
3.2.4. Discussion
4. Functional Requirements for PDCA 4.0
4.1. Automatic Data Collection System (R1)
4.2. Advanced Analysis Tool (R2)
4.3. Problem Prediction System (R3)
4.4. Real-Time Visualization System to Consult Production Data (R4)
4.5. System That Analyzes Countermeasures’ Impact before Their Implementation (R5)
4.6. System That Prioritizes CI Projects (R6)
4.7. Dynamic Planning of Improvement Activities with Alarmistic (R7)
4.8. Digital Support for CI Documentation (R8)
4.9. Organizationally Transversal System for Consulting Best Practices (R9)
4.10. Automatic and Intelligent Work System (R10)
4.11. Rapid Prototyping System (R11)
5. PDCA 4.0′s Framework Dynamics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Description of the I4.0 Technological Concepts Considered in This Study
Appendix B. Conceptual Approaches for the Application of I4.0 to LM/CI
Follow-up and Standardization |
| ||||
Implementation |
|
|
| ||
Countermeasures |
| ||||
Root causes |
|
| |||
Diagnosis |
| ||||
Mapping |
| ||||
KPI analysis |
| ||||
Doc. Management |
| ||||
IoT | CPS | Big Data | Cloud | Sens&Act |
Appendix C. Empirical Approaches for the Application of I4.0 to LM/CI
Subject | Insights | References |
---|---|---|
A simultaneous approach is needed |
| [58,59,61] |
Difficulties with I4.0 concepts |
| [58,59,60] |
Benefits of integrating I4.0 into LM |
| [61] |
Greater synergies between LM and I4.0 |
| [59,60] |
| [62] | |
Frequent interdependencies related to CI |
| [59] |
Rare interdependencies related to CI |
| [59] |
| [62] | |
I4.0 technologies of greatest consideration for implementation |
| [61] |
Appendix D. Practical Approaches for the Application of I4.0 to LM/CI
References | Use Cases | Doc. Management | KPI Analysis | Mapping | Diagnosis | Root Causes | Countermeasures | Implementation | Follow-Up and Standardization. |
---|---|---|---|---|---|---|---|---|---|
[30] | Web-based monitoring tools to collect data, MES to monitor manufacturing processes in real-time, root cause analysis with the aid of digital boards, and 3D printing to test product designs. | X | X | X | X | ||||
[64] | Big Data tool stack that processes a high volume of data, feeding predictive models based on machine learning and a descriptive analysis module that, through graphs, aids in accessing recent problems and their root causes. | X | X | X | |||||
[63] | Data collection system for an actual machine using sensors and a CPS, also allowing for the real-time visualization of KPIs. | X | X | ||||||
[65] | RFID-based system that can collect data (e.g., quantity of items in a given place and cycle times). This system has the potential to be adapted for the VSM, allowing a real-time representation of the production system. | X | |||||||
[67] | Value chain analysis capable of determining inventory stocks based on a Big Data model that collects product information. | X | |||||||
[1,75,76,77] | Augmented/extended reality applied to manual workstations for the identification of tasks and the display of individualized information. Applicable to maintenance, production, and quality control activities. | X | X | X | |||||
[69] | Scheduling solutions based on real-time simulations, allowing to reach on-demand production and JIT delivery. | X | |||||||
[67] | Value stream analysis based on a Big Data model that collects information from the products and processes. | X | |||||||
[68] | Combination of VSM with simulation models to validate current and future states, allowing for decision makers to perform comprehensive analyses on the system. | X | X | ||||||
[70] | Web-based digital Kanban board that allows to visualize and limit WIP for software development projects. Quality of communication and motivation were improved. | X | |||||||
[71] | Large screen digital Kanban that can be operated with a smartphone and uses a short-focus projector. | X | |||||||
[72] | Implementation of a computer-aided task board with real-time tracking features. Tickets are created online, printed, and pinned to the physical board, which is tracked by a camera. This application can track physical changes in real-time, updating the board online. | X |
References | Use Cases | Doc. Management | KPI Analysis | Mapping | Diagnosis | Root Causes | Countermeasures | Implementation | Follow-Up and Standardization. |
---|---|---|---|---|---|---|---|---|---|
[73] | Measurement-aided welding cell consisting of two handling robots, a welding robot, and an optical measurement system. This system allows the user to quickly change between manufactured products, offering the chance to produce low volume orders. | X | X | ||||||
[74] | CPS for enabling a safe human–robot collaborative assembly cell, where humans, industrial robots, and moving robots (AGVs) may operate. The system is based on real-time evaluations regarding safety distances and a closed loop control for triggering collision preventive actions. | X | |||||||
[80] | Jidoka—A Jidoka system based on a CPS. | X | X | ||||||
[81] | Jidoka—Incorporation of a CPS in a milling machine, allowing it to schedule material flow and detect failures automatically. | X | X | X | |||||
[79] | TPM—Transformation of the maintenance model from preventive to predictive through the real-time collection of data. Use of data mining to monitor defect rates and registered breakdowns. | X | X | ||||||
[8] | TPM—Machine learning-based condition monitoring along with cloud computing to improve TPM practices. | X | X | ||||||
[78] | TPM—Online root cause analysis, tracking maintenance, and repair activities. | X |
References
- Kolberg, D.; Zühlke, D. Lean Automation enabled by Industry 4.0 Technologies. IFAC PapersOnLine 2015, 28, 1870–1875. [Google Scholar] [CrossRef]
- Bhuiyan, N.; Baghel, A. An overview of continuous improvement: From the past to the present. Manag. Decis. 2005, 43, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Singh, H. Continuous improvement philosophy—literature review and directions. Benchmarking 2015, 22, 75–119. [Google Scholar] [CrossRef]
- Rosin, F.; Forget, P.; Lamouri, S.; Pellerin, R. Impacts of Industry 4.0 technologies on Lean principles. Int. J. Prod. Res. 2020, 58, 1644–1661. [Google Scholar] [CrossRef]
- Buer, S.V.; Strandhagen, J.O.; Chan, F.T.S. The link between industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda. Int. J. Prod. Res. 2018, 56, 2924–2940. [Google Scholar] [CrossRef] [Green Version]
- Mayr, A.; Weigelt, M.; Kühl, A.; Grimm, S.; Erll, A.; Potzel, M.; Franke, J. Lean 4.0-A conceptual conjunction of lean management and Industry 4.0. Procedia CIRP 2018, 72, 622–628. [Google Scholar] [CrossRef]
- Miqueo, A.; Torralba, M.; Yagüe-Fabra, J.A. Lean manual assembly 4.0: A systematic review. Appl. Sci. 2020, 10, 8555. [Google Scholar] [CrossRef]
- Moshiri, M.; Charles, A.; Elkaseer, A.; Scholz, S.; Mohanty, S.; Tosello, G. An industry 4.0 framework for tooling production using metal additive manufacturing-based first-time-right smart manufacturing system. Procedia CIRP 2020, 93, 32–37. [Google Scholar] [CrossRef]
- Pereira, A.C.; Dinis-Carvalho, J.; Alves, A.C.; Arezes, P. How Industry 4.0 can enhance lean practices. FME Trans. 2019, 47, 810–822. [Google Scholar] [CrossRef] [Green Version]
- Hambach, J.; Kümmel, K.; Metternich, J. Development of a Digital Continuous Improvement System for Production. Procedia CIRP 2017, 63, 330–335. [Google Scholar] [CrossRef]
- Rittberger, S.; Schneider, M. Continuous Improvement of Lean Processes With Industry 4.0 Technologies. In Proceedings of the 11th International Doctoral Students Workshop on Logistics, Magdeburg, Germany, 9 June 2018. [Google Scholar]
- Valamede, L.S.; Akkari, A.C.S. Lean 4.0: A new holistic approach for the integration of lean manufacturing tools and digital technologies. Int. J. Math. Eng. Manag. Sci. 2020, 5, 854–868. [Google Scholar] [CrossRef]
- Liker, J.K. The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Ohno, T. Toyota Production System: Beyond Large-Scale Production; Productivity Press: New York, NY, USA, 1978. [Google Scholar]
- Parmenter, D. Key Performance Indicators—Developing, Implementing, and Using Winning KPIs; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kerzner, H. Project Management Metrics, KPIs, and Dashboards: A Guide to Measuring and Monitoring Project Performance; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Rother, M.; Shook, J. Learning to See: Value Stream Mapping to Add Value and Eliminate Muda; Lean Enterprise Institute: Cambridge, MA, USA, 2003. [Google Scholar]
- Leite, D.G.; Montesco, R.A.E.; Sakuraba, C.S. Increasing a gas distributor net profit through Lean Six Sigma. Qual. Eng. 2018, 30, 359–370. [Google Scholar] [CrossRef]
- Pietrzak, M.; Paliszkiewicz, J. Framework of Strategic Learning: The PDCA Cycle. Management 2015, 10, 149–161. [Google Scholar]
- Eaton, M. Lean Practitioner’s Handbook; KoganPage: London, UK, 2013. [Google Scholar]
- Liker, J.K.; Meier, D. The Toyota Way Fieldbook: A Practical Guide for Implementing Toyota’s 4Ps; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Iuga, M.V.; Rosca, L.I. Comparison of problem solving tools in lean organizations. MATEC Web Conf. 2017, 121, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bassuk, J.A.; Washington, I.M. The a3 problem solving report: A 10-step scientific method to execute performance improvements in an academic research vivarium. PLoS ONE 2013, 8, e76833. [Google Scholar] [CrossRef]
- Sobek, D.K.; Jimmerson, C. A3 reports: Tool for process improvement. In Proceedings of the IIE Annual Conference, Houston, TX, USA, 15–19 May 2004; pp. 1047–1052. [Google Scholar]
- Nascimento, D.L.d.; Sotelino, E.D.; Lara, T.P.S.; Caiado, R.G.G.; Ivson, P. Constructability in industrial plants construction: A BIM-Lean approach using the Digital Obeya Room framework. J. Civ. Eng. Manag. 2017, 23, 1100–1108. [Google Scholar] [CrossRef]
- Meister, M.; Beßle, J.; Cviko, A.; Böing, T.; Metternich, J. Manufacturing analytics for problem-solving processes in production. Procedia CIRP 2019, 81, 1–6. [Google Scholar] [CrossRef]
- Tokola, H.; Gröger, C.; Järvenpää, E.; Niemi, E. Designing Manufacturing Dashboards on the Basis of a Key Performance Indicator Survey. Procedia CIRP 2016, 57, 619–624. [Google Scholar] [CrossRef]
- Dogan, O.; Gurcan, O.F. Data perspective of lean six sigma in industry 4.0 era: A guide to improve quality. Proc. Int. Conf. Ind. Eng. Oper. Manag. 2018, 2018, 943–953. [Google Scholar]
- Prause, G.; Atari, S. On sustainable production networks for industry 4.0. Entrep. Sustain. Issues 2017, 4, 421–431. [Google Scholar] [CrossRef]
- Vo, B.; Kongar, E.; Suarez-Barraza, M.F. Root-Cause Problem Solving in an Industry 4.0 Con. IEEE Eng. Manag. Rev. 2020, 48, 48–56. [Google Scholar] [CrossRef]
- Uriarte, A.G.; Ng, A.H.C.; Moris, M.U. Supporting the lean journey with simulation and optimization in the context of Industry 4.0. Procedia Manuf. 2006, 25, 586–593. [Google Scholar] [CrossRef]
- Standridge, C.R.; Marvel, J.H. Why lean needs simulation. In Proceedings of the 2006 Winter Simulation Conference, Monterey, CA, USA, 3–6 December 2006; pp. 1907–1913. [Google Scholar] [CrossRef] [Green Version]
- Detty, R.B.; Yingling, J.C. Quantifying benefits of conversion to lean manufacturing with discrete event simulation: A case study. Int. J. Prod. Res. 2000, 38, 429–445. [Google Scholar] [CrossRef]
- Schuh, G.; Reiner, A.; Gausemeier, J.; Hompel, M.t.; Wahlster, W. Industry 4.0 Maturity Index. Available online: https://en.acatech.de/publication/industrie-4-0-maturity-index-managing-the-digital-transformation-of-companies/ (accessed on 15 August 2021).
- Vinodh, S.; Antony, J.; Agrawal, R.; Douglas, J.A. Integration of continuous improvement strategies with Industry 4.0: A systematic review and agenda for further research. TQM J. 2020, 33, 441–472. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar] [CrossRef] [Green Version]
- Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final Rep. Ind. 4.0 Work. Group 2013, 1–84. Available online: https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/download-pdf?lang=en. (accessed on 15 August 2021).
- Bitkom; VDMA; ZVEI. Implementation Strategy Industrie 4.0; Bitkom: Berlin, Germany, 2015. [Google Scholar]
- Amaral, A. A Framework for Assessing Manufacturing SMEs Industry 4.0 Maturity. Appl. Sci. 2021, 11, 6127. [Google Scholar] [CrossRef]
- Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G. The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2019, 229, 107776. [Google Scholar] [CrossRef]
- da Costa, M.B.; Santos, L.M.A.L.D.; Schaefer, J.L.; Baierle, I.C.; Nara, E.O.B. Industry 4.0 technologies basic network identification. Scientometrics 2019, 121, 977–994. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Bibby, L.; Dehe, B. Defining and assessing industry 4.0 maturity levels–Case of the defence sector. Prod. Plan. Control 2018, 29, 1030–1043. [Google Scholar] [CrossRef]
- Lai, N.Y.G.; Wong, K.H.; Halim, D.; Lu, J.; Kang, H.S. Industry 4.0 Enhanced Lean Manufacturing. In Proceedings of the 8th International Conference on Industrial Technology and Management (ICITM), Cambridge, UK, 2–4 March 2019; pp. 206–211. [Google Scholar] [CrossRef]
- Pekarčíková, M.; Trebuňa, P.; Kliment, M. Digitalization effects on the usability of lean tools. Acta Logist. 2019, 6, 9–13. [Google Scholar] [CrossRef]
- Jayaram, A. Lean six sigma approach for global supply chain management using industry 4.0 and IIoT. In Proceedings of the 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; pp. 89–94. [Google Scholar] [CrossRef]
- Shahin, M.; Chen, F.F.; Bouzary, H.; Krishnaiyer, K. Integration of Lean practices and Industry 4.0 technologies: Smart manufacturing for next-generation enterprises. Int. J. Adv. Manuf. Technol. 2020, 107, 2927–2936. [Google Scholar] [CrossRef]
- Krishnaiyer, K.; Chen, F.F.; Bouzary, H. Cloud Kanban Framework for Service Operations Management. Procedia Manuf. 2011, 17, 531–538. [Google Scholar] [CrossRef]
- Esfandyari, A.; Osman, M.R.; Ismail, N.; Tahriri, F. Application of value stream mapping using simulation to decrease production lead time: A Malaysian manufacturing case. Int. J. Ind. Syst. Eng. 2011, 8, 230–250. [Google Scholar] [CrossRef]
- Ito, D.; Ishida, H. Digital Twin Technology for Continuous Improvement at Manufacturing Sites. Digit. Solut. Better Futur. Soc. 2020, 69, 66–70. [Google Scholar]
- Lee, J.; Jin, C.; Liu, Z. Predictive Big Data Analytics and Cyber Physical Systems for TES Systems. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 2241. [Google Scholar] [CrossRef] [Green Version]
- Karlovits, I. Technologies for using big data in the paper and printing industry. J. Print Media Technol. Res. 2017, 6, 75–84. [Google Scholar] [CrossRef]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A Glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Meesublak, K.; Klinsukont, T. A Cyber-Physical System Approach for Predictive Maintenance. In Proceedings of the IEEE International Conference on Smart Internet of Things (SmartIoT), Beijing, China, 14–16 August 2020; pp. 337–341. [Google Scholar] [CrossRef]
- Perico, P.; Arica, E.; Powell, D.J.; Gaiardelli, P. MES as an enabler of lean manufacturing. IFAC PapersOnLine 2019, 52, 48–53. [Google Scholar] [CrossRef]
- Arica, E.; Powell, D.J. Status and future of manufacturing execution systems. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017; pp. 2000–2004. [Google Scholar] [CrossRef] [Green Version]
- Rossini, M.; Costa, F.; Tortorella, G.L.; Portioli-Staudacher, A. The interrelation between Industry 4.0 and lean production: An empirical study on European manufacturers. Int. J. Adv. Manuf. Technol. 2019, 102, 3963–3976. [Google Scholar] [CrossRef]
- Dombrowski, U.; Richter, T.; Krenkel, P. Interdependencies of Industrie 4.0 & Lean Production Systems: A Use Cases Analysis. Procedia Manuf. 2017, 11, 1061–1068. [Google Scholar] [CrossRef]
- Beifert, A.; Gerlitz, L.; Prause, G. Industry 4.0–For sustainable development of lean manufacturing companies in the shipbuilding sector. Lect. Notes Netw. Syst. 2018, 36, 563–573. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Dhone, N.C. Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies. Int. J. Prod. Res. 2019, 58, 1–19. [Google Scholar] [CrossRef]
- Tortorella, G.; Sawhney, R.; Jurburg, D.; de Paula, I.C.; Tlapa, D.; Thurer, M. Towards the proposition of a Lean Automation framework. J. Manuf. Technol. Manag. 2020, 32, 593–620. [Google Scholar] [CrossRef]
- Shafiq, S.I.; Velez, G.; Toro, C.; Sanin, C.; Szczerbicki, E. Designing intelligent factory: Conceptual framework and empirical validation. Procedia Comput. Sci. 2016, 96, 1801–1808. [Google Scholar] [CrossRef] [Green Version]
- Lade, P.; Ghosh, R.; Srinivasan, S. Manufacturing analytics and industrial Internet of Things. IEEE Intell. Syst. 2017, 32, 74–79. [Google Scholar] [CrossRef]
- Aydos, T.F.; Ferreira, J.C.E. RFID-based system for Lean Manufacturing in the context of Internet of Things. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016; pp. 1140–1145. [Google Scholar] [CrossRef]
- Ramadan, M.; Wang, Z.; Noche, B. RFID-Enabled dynamic Value Stream Mapping. In Proceedings of the 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, Suzhou, China, 8–10 July 2012; pp. 117–122. [Google Scholar] [CrossRef]
- Wamg, B.; Zhao, J.; Wan, Z.; Ma, J.; Li, H.; Ma, J. Lean Intelligent Production System and Value Stream Practice. DEStech Trans. Econ. Manag. 2016. [Google Scholar] [CrossRef]
- Cavdur, F.; Yagmahan, B.; Oguzcan, E.; Arslan, N.; Sahan, N. Lean service system design: A simulation-based VSM case study. Bus. Process Manag. J. 2019, 25, 1802–1821. [Google Scholar] [CrossRef]
- Dallasega, P.; Rojas, R.A.; Rauch, E.; Matt, D.T. Simulation Based Validation of Supply Chain Effects through ICT enabled Real-time-capability in ETO Production Planning. Procedia Manuf. 2017, 11, 846–853. [Google Scholar] [CrossRef]
- Nakazawa, S.; Tanaka, T. Development and application of kanban tool visualizing the work in progress. In Proceedings of the 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Kumamoto, Japan, 10–14 July 2016; pp. 908–913. [Google Scholar] [CrossRef]
- Nakazawa, S.; Komatsu, K.; Tanaka, T.; Matsumoto, K. Development and Evaluation of Large-Screen Digital Kanban with Smartphone Operation. In Proceedings of the 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Hamamatsu, Japan, 9–13 July 2017; pp. 295–300. [Google Scholar] [CrossRef]
- Bacea, I.M.; Ciupe, A.; Meza, S.N. Interactive Kanban—Blending Digital and Physical Resources for Collaborative Project Based Learning. In Proceedings of the IEEE 17th International Conference on Advanced Learning Technologies (ICALT), Timisoara, Romania, 3–7 July 2017; Volume 83, pp. 210–211. [Google Scholar] [CrossRef]
- Tuominen, V. The measurement-aided welding cell—Giving sight to the blind. Int. J. Adv. Manuf. Technol. 2016, 86, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Nikolakis, N.; Maratos, V.; Makris, S. A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace. Robot. Comput. Integr. Manuf. 2019, 56, 233–243. [Google Scholar] [CrossRef]
- Pejić, P.; Rizov, T.; Krasić, S.; Stajić, B. Augmented reality application in engineering. In Proceedings of the 3rd International Congress, SMAT, Craiova, Romania, 23–25 October 2014; pp. 39–44. [Google Scholar]
- Dini, G.; Mura, M.D. Application of Augmented Reality Techniques in Through-life Engineering Services. Procedia CIRP 2017, 38, 127–134. [Google Scholar] [CrossRef]
- de Pace, F.; Manuri, F.; Sanna, A. Augmented Reality in Industry 4.0. Am. J. Comput. Sci. Inf. Technol. 2018, 6, 17. [Google Scholar] [CrossRef]
- Mora, E.; Gaiardelli, P.; Resta, B.; Powell, D. Exploiting lean benefits through smart manufacturing: A comprehensive perspective. IFIP Adv. Inf. Commun. Technol. 2017, 513, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Ghobakhloo, M.; Fathi, M. Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing. J. Manuf. Technol. Manag. 2020, 31, 1–30. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Q.; Zhao, Z. SLAE–CPS: Smart lean automation engine enabled by cyber-physical systems technologies. Sensors 2017, 17, 1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Mrugalska, B.; Wyrwicka, M.K. Towards Lean Production in Industry 4.0. Procedia Eng. 2017, 182, 466–473. [Google Scholar] [CrossRef]
- Wang, S.; Wan, J.; Li, D.; Zhang, C. Implementing Smart Factory of Industrie 4.0: An Outlook. Int. J. Distrib. Sens. Netw. 2016, 12, 3159805. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, K.; He, Y. Industry 4.0—Potentials for Predictive Maintenance. Adv. Econ. Bus. Manag. Res. 2016, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Anagnostou, A.; Kiss, T. High Speed Simulation Analytics. In Simulation for Industry 4.0; Springer: Cham, Switzerland, 2019; pp. 167–189. [Google Scholar] [CrossRef] [Green Version]
- Aqlan, F.; Al-Fandi, L. Prioritizing process improvement initiatives in manufacturing environments. Int. J. Prod. Econ. 2018, 196, 261–268. [Google Scholar] [CrossRef]
- Maarof, M.G.; Mahmud, F. A Review of Contributing Factors and Challenges in Implementing Kaizen in Small and Medium Enterprises. Procedia Econ. Financ. 2016, 35, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Zakoldaev, D.A.; Gurjanov, A.V.; Shukalov, A.V.; Zharinov, I.O. The life cycle of technical documentation in the smart factory of Industry 4.0. IOP Conf. Ser. Mater. Sci. Eng. 2019, 665, 5. [Google Scholar] [CrossRef]
- Gattullo, M.; Scurati, G.W.; Fiorentino, M.; Uva, A.E.; Ferrise, F.; Bordegoni, M. Towards augmented reality manuals for industry 4.0: A methodology. Robot. Comput. Integr. Manuf. 2019, 56, 276–286. [Google Scholar] [CrossRef]
- White, G.; Cabrera, C.; Palade, A.; Clarke, S. Augmented reality in IoT. Lect. Notes Comput. Sci. 2019, 11434, 149–160. [Google Scholar] [CrossRef]
- Andrade, T.; Bastos, D. Extended reality in iot scenarios: Concepts, applications and future trends. In Proceedings of the 5th Experiment International Conference (exp.at’19), Funchal, Portugal, 12–14 June 2019; pp. 107–112. [Google Scholar] [CrossRef]
- Pfeffer, J.; Graube, M.; Reipschlaeger, P.; Arndt, S.; Urbas, L.; Dachselt, R.; Stelzer, R. Towards collaborative plant control using a distributed information and interaction space. In Proceedings of the IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg, 8–11 September 2015. [Google Scholar] [CrossRef]
- Bairagi, V.K.; Joshi, S.L.; Barshikar, S.H. A Survey on Internet of Things. Int. J. Comput. Sci. Eng. 2018, 6, 492–496. [Google Scholar] [CrossRef]
- Roth, A. Einführung und Umsetzung von Industrie 4.0; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Lele, A. Disruptive Technologies for the Militaries and Security; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- de Ugarte, B.S.; Artiba, A.; Pellerin, R. Manufacturing execution system—A literature review. Prod. Plan. Control 2009, 20, 525–539. [Google Scholar] [CrossRef]
Phase | General | Problem Identification | Problem Solving | |||||
---|---|---|---|---|---|---|---|---|
Activity | Information Management | KPI analysis | Mapping | Diagnosis | Root Causes | Countermeasures | Implementation | Follow-up and Standardization |
PDCA | P D C A | P | P | P | P | P | D | C A |
Challenges | Information Management | KPI Analysis | Mapping | Diagnosis | Root Causes | Countermeasures | Implementation | Follow-Up and Standardization | |
---|---|---|---|---|---|---|---|---|---|
I | Project status information can only be consulted in Obeya Rooms | X | X | ||||||
Insufficient information on the current status of problem-solving projects | X | X | |||||||
Lack of access to previous problem-solving projects | X | X | X | ||||||
II | Manual data collection and analysis | X | X | X | X | ||||
Inefficient system for communicating best practices | X | ||||||||
III | Use of basic analytics tools | X | X | ||||||
Lack of use of simulation and optimization techniques | X | X | X |
PDCA 4.0′S Functional Requirements | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | ||
I4.0 Technological concepts | IoT | X | X | X | X | X | X | X | X | X | X | X |
CPS | X | X | X | |||||||||
Big Data | X | X | X | X | X | X | ||||||
Cloud | X | X | X | X | X | X | X | X | X | X | ||
Sens&Act | X | |||||||||||
AutRob | X | |||||||||||
Sim&Virt | X | X | X | X | X | |||||||
3DP | X | |||||||||||
MES | X | X | X | |||||||||
eVC | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peças, P.; Encarnação, J.; Gambôa, M.; Sampayo, M.; Jorge, D. PDCA 4.0: A New Conceptual Approach for Continuous Improvement in the Industry 4.0 Paradigm. Appl. Sci. 2021, 11, 7671. https://doi.org/10.3390/app11167671
Peças P, Encarnação J, Gambôa M, Sampayo M, Jorge D. PDCA 4.0: A New Conceptual Approach for Continuous Improvement in the Industry 4.0 Paradigm. Applied Sciences. 2021; 11(16):7671. https://doi.org/10.3390/app11167671
Chicago/Turabian StylePeças, Paulo, João Encarnação, Manuel Gambôa, Manuel Sampayo, and Diogo Jorge. 2021. "PDCA 4.0: A New Conceptual Approach for Continuous Improvement in the Industry 4.0 Paradigm" Applied Sciences 11, no. 16: 7671. https://doi.org/10.3390/app11167671
APA StylePeças, P., Encarnação, J., Gambôa, M., Sampayo, M., & Jorge, D. (2021). PDCA 4.0: A New Conceptual Approach for Continuous Improvement in the Industry 4.0 Paradigm. Applied Sciences, 11(16), 7671. https://doi.org/10.3390/app11167671