Evaluation of Long-Term Leaching of Arsenic from Arsenic Contaminated and Stabilized Soil Using the Percolation Column Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Used in This Study
2.2. Reagent and Materials
2.3. Stabilization of As-Contaminated Soil
2.4. Up-Flow Percolation Column Test
2.5. Toxicity Characteristics Leaching Procedure (TCLP)
2.6. Chemical Analysis of Samples
3. Results and Discussion
3.1. Percolation Column Test Results
3.1.1. Change in pH, EC and Eh of Effluent
3.1.2. Release of Arsenic (As) from the Soil: An Up-Flow Percolation Column Test
3.1.3. Cumulative As Release as a Function of L/S
3.2. TCLP Test for Contaminated Soil/Stabilized Soils
3.3. TCLP vs. Percolation Column Procedure: A Comparison for As Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Soil contamination, risk assessment and remediation. In Environmental Risk Assessment of Soil Contamination; Soriano, M.C.H., Ed.; InTech: London, UK, 2014. [Google Scholar]
- Pigna, M.; Caporale, A.G.; Cavalca, L.; Sommella, A.; Violante, A. Arsenic in the Soil Environment: Mobility and Phytoavailability. Environ. Eng. Sci. 2015, 32, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Federal Register; USEPA: Washington, DC, USA, 2001. Available online: https://www.federalregister.gov/documents/2001/01/22/01-1668/national-primary-drinking-water-regulations-arsenic-and-clarifications-to-compliance-and-new-source (accessed on 23 August 2021).
- Nriagu, J.O.; Bhattacharya, P.; Mukherjee, A.B.; Bundschuh, J.; Zevenhoven, R.; Loeppert, R.H. Arsenic in soil and groundwater: An overview. Trace Met. Contam. Environ. 2007, 9, 3–60. [Google Scholar] [CrossRef]
- Shankar, S.; Shanker, U. Shikha arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014, 2014, 304524. [Google Scholar] [CrossRef] [PubMed]
- Nejad, Z.D.; Jung, M.C.; Kim, K.-H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 2018, 40, 927–953. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, S.; Tak, H.; Kim, K.; Chung, C.-W.; Lee, M. Mechanisms at Different pH for Stabilization of Arsenic in Mine Tailings Using Steelmaking Slag. Minerals 2020, 10, 900. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Wang, Y.; Liu, X.; Ye, S. Stabilization of iron-arsenic deposits by encapsulation with montmorillonite inorganic gels. Environ. Eng. Res. 2021, 27, 200671. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Q.; Wang, J.; Liao, X. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil. J. Environ. Sci. 2017, 57, 104–109. [Google Scholar] [CrossRef]
- Du, Y.-J.; Liu, S.-Y.; Liu, Z.-B.; Chen, L.; Zhang, F.; Jin, F. An Overview of Stabilization/Solidification Technique for Heavy Metals Contaminated Soils. In Advances in Environmental Geotechnics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 760–766. [Google Scholar]
- USEPA. Arsenic Treatment Technologies for Soil, Waste, and Water; USEPA: Washington, DC, USA, 2002. [Google Scholar]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Moon, D.H.; Dermatas, D.; Menounou, N. Arsenic immobilization by calcium–arsenic precipitates in lime treated soils. Sci. Total. Environ. 2004, 330, 171–185. [Google Scholar] [CrossRef]
- Ahn, Y.; Han, M.; Choi, J. Monitoring the mobility of heavy metals and risk assessment in mine-affected soils after stabilization. J. Hazard. Mater. 2020, 400, 123231. [Google Scholar] [CrossRef]
- Komárek, M.; Vanek, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review. Environ. Pollut. 2013, 172, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Yasutaka, T.; Naka, A.; Sakanakura, H.; Kurosawa, A.; Inui, T.; Takeo, M.; Inoba, S.; Watanabe, Y.; Fujikawa, T.; Miura, T.; et al. Reproducibility of up-flow column percolation tests for contaminated soils. PLoS ONE 2017, 12, e0178979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grathwohl, P.; Susset, B. Comparison of percolation to batch and sequential leaching tests: Theory and data. Waste Manag. 2009, 29, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Naka, A.; Yasutaka, T.; Sakanakura, H.; Kalbe, U.; Watanabe, Y.; Inoba, S.; Takeo, M.; Inui, T.; Katsumi, T.; Fujikawa, T.; et al. Column percolation test for contaminated soils: Key factors for standardization. J. Hazard. Mater. 2016, 320, 326–340. [Google Scholar] [CrossRef] [Green Version]
- Rachman, R.M.; Bahri, A.S.; Trihadiningrum, Y. Stabilization and solidification of tailings from a traditional gold mine using Portland cement. Environ. Eng. Res. 2018, 23, 189–194. [Google Scholar] [CrossRef]
- Lim, J.-M.; You, Y.; Kamala-Kannan, S.; Oh, S.-G.; Oh, B.-T. Stabilization of Metals-contaminated Farmland Soil using Limestone and Steel Refining Slag. J. Soil Groundw. Environ. 2014, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Leaching Environmental Assessment Framework (Leaf) How-to Guide Understanding the Leaf Approach and How and When to Use It Leaching Environmental Assessment Framework (Leaf) How-to Guide Notice/Disclaimer & Acknowledgements II; USEPA: Washington, DC, USA, 2017. [Google Scholar]
- USEPA. Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio for Constituents in Solid Materials Using an Up Flow Percolation Column Procedure; USEPA: Washington, DC, USA, 2017. [Google Scholar]
- Kogbara, R.B.; Al-Tabbaa, A.; Yi, Y.; Stegemann, J.A. pH-dependent leaching behaviour and other performance properties of cement-treated mixed contaminated soil. J. Environ. Sci. 2012, 24, 1630–1638. [Google Scholar] [CrossRef]
- Di Gianfilippo, M.; Costa, G.; Pantini, S.; Allegrini, E.; Lombardi, F.; Astrup, T.F. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data. Waste Manag. 2016, 47, 285–298. [Google Scholar] [CrossRef]
- KMA. Climate Monitoring. Available online: https://www.kma.go.kr/eng/biz/climate_01.jsp (accessed on 23 June 2021).
- Bruder-Hubscher, V.; Lagarde, F.; Leroy, M.J.F.; Coughanowr, C.; Enguehard, F. Utilisation of bottom ash in road construction: Evaluation of the environmental impact. Waste Manag. Res. 2001, 19, 545–556. [Google Scholar] [CrossRef]
- Birgisdóttir, H.; Bhander, G.; Hauschild, M.Z.; Christensen, T. Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Manag. 2007, 27, S75–S84. [Google Scholar] [CrossRef]
- USEPA. Toxicity Characteristics Leaching Procedure; USEPA: Washington, DC, USA, 1992; pp. 1–35. [Google Scholar]
- Panthi, G.; Bajagain, R.; An, Y.-J.; Jeong, S.-W. Leaching potential of chemical species from real perovskite and silicon solar cells. Process. Saf. Environ. Prot. 2021, 149, 115–122. [Google Scholar] [CrossRef]
- USEPA. Method 6020 Inductively Coupled Plasma—Mass Spectrometry. Available online: https://www.epa.gov/sites/production/files/documents/6020.pdf (accessed on 16 June 2021).
- USEPA. Method 3010a Acid Digestion of Aqueous Samples and Extracts for Taotal Metals for Analysis by Flaa or ICP Spectroscopy; USEPA: Washington, DC, USA, 1992. [Google Scholar]
- Salunkhe, S. Analysis of Arsenic in Glass Using Hydride Generation Atomic Absorption Technique—Experimental Notes PinAAcle 900T AA Sample Preparation. Perkin Elmer: Waltham, MA, USA; Available online: https://www.perkinelmer.com/CMSResources/Images/exp8-Analysis-of-Arsenic-in-Glass-using-Hydride-generation.pdf (accessed on 4 June 2021).
- USEPA. Method 7062 Antimony and Arsenic (Atomic Absorption, Borohydride Reduction); USEPA: Washington, DC, USA, 1994. [Google Scholar]
- Hineman, A. Determination of As, SE and Hg in Waters by Hydride Generation/Cold Vapor Atomic Absorption Spectroscopy; Perkin Elmer: Waltham, MA, USA, 2021. [Google Scholar]
- Chegenizadeh, A.; Keramatikerman, M.; Afzal, F.; Nikraz, H.; Lau, C.K. An Investigation into Performance of Cement-Stabilized Kaolinite Clay with Recycled Seashells Exposed to Sulphate. Sustainability 2020, 12, 8367. [Google Scholar] [CrossRef]
- Sumra, Y.; Payam, S.; Zainah, I. The pH of Cement-based Materials: A Review. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020, 35, 908–924. [Google Scholar] [CrossRef]
- Al-Jabban, W.; Laue, J.; Knutsson, S.; Al-Ansari, N. A Comparative Evaluation of Cement and By-Product Petrit T in Soil Stabilization. Appl. Sci. 2019, 9, 5238. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Baaj, H.; Zupko, S.; Smith, T. Field and lab assessment for cement-stabilized subgrade in Chatham. In Green Technology in Geotechnical and Materials Engineering, Proceedings of the TAC 2018: Innovation and Technology: Evolving Transportation—2018 Conference and Exhibition of the Transportation Association of Canada. Ontario, Canada, 2018; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2018; Available online: https://www.tac-atc.ca/sites/default/files/conf_papers/wangs-field_and_lab_assessment.pdf (accessed on 23 August 2021).
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef] [Green Version]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Value |
---|---|---|
Soil texture: Loamy sand | ||
Sand (0.020–2.000 mm) | % | 80.0 |
Silt (0.002–0.020 mm) | % | 14.0 |
Clay (<0.002 mm) | % | 6.0 |
pH (H2O, 1:5) | 7.6 | |
Soil-moisture content | % | 8.5 |
Electric conductivity (EC) | mS/cm | 0.034 |
Oxidation-reduction potential (ORP) | mV | 80.5 |
Redox potential (Eh) | mV | 280.5 |
Organic matter (OM), loss on ignition (LOI) | % | 4.07 ± 0.07 |
Arsenic | mg/kg | 82.5 ± 7.1 |
Parameters | Control | Stabilization Types | |||
---|---|---|---|---|---|
AMDS | Steel Slag | CMDS | Cement | ||
Column height (cm) | 30 | 30 | 30 | 30 | 30 |
Column diameter (cm) | 5 | 5 | 5 | 5 | 5 |
Sample dry mass in the columns (g) | 616.8 | 539.6 | 549.4 | 533.7 | 519.4 |
Height of the soil in the columns (cm) | 21 | 21 | 21 | 22 | 23 |
Bulk density (g/cm3) | 1.46 | 1.33 | 1.33 | 1.32 | 1.20 |
Flow rate (mL/min) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Initial equilibrium time (h) | 24 | 24 | 24 | 24 | 24 |
Eluent | 0.001 M CaCl2 solution in deionized water | ||||
Sampling cumulative L/S (L/kg; eluent collection) | 0.2, 0.5, 1, 1.5, 2, 4.5, 5, 9.5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panthi, G.; Choi, J.; Jeong, S.-W. Evaluation of Long-Term Leaching of Arsenic from Arsenic Contaminated and Stabilized Soil Using the Percolation Column Test. Appl. Sci. 2021, 11, 7859. https://doi.org/10.3390/app11177859
Panthi G, Choi J, Jeong S-W. Evaluation of Long-Term Leaching of Arsenic from Arsenic Contaminated and Stabilized Soil Using the Percolation Column Test. Applied Sciences. 2021; 11(17):7859. https://doi.org/10.3390/app11177859
Chicago/Turabian StylePanthi, Gayatri, Jaeyoung Choi, and Seung-Woo Jeong. 2021. "Evaluation of Long-Term Leaching of Arsenic from Arsenic Contaminated and Stabilized Soil Using the Percolation Column Test" Applied Sciences 11, no. 17: 7859. https://doi.org/10.3390/app11177859
APA StylePanthi, G., Choi, J., & Jeong, S. -W. (2021). Evaluation of Long-Term Leaching of Arsenic from Arsenic Contaminated and Stabilized Soil Using the Percolation Column Test. Applied Sciences, 11(17), 7859. https://doi.org/10.3390/app11177859