Sea Purslane as an Emerging Food Crop: Nutritional and Biological Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Nutritional Composition Analysis
2.4. Mineral and Heavy Metal Composition Analysis
2.5. Color Coordinates
2.6. Extraction Procedure
2.7. Chemical Composition and Antioxidant and Enzymatic Activities
2.8. Drying
2.9. Food Usage Suggestions
2.9.1. Pasta
2.9.2. Butter
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition
3.2. Color
3.3. Mineral and Heavy Metal Composition
Composition | H. portulacoides Present Study | Sarcocornia perennis alpini [4] | Salicornia ramosissima [4] | Salicornia bigelovii Torr [43] |
---|---|---|---|---|
Na (mg/100 g) | 8190.18 ± 35.10 | 6430 ± 90 | 8990 ± 50 | 8618 ± 613 |
K (mg/100 g) | 1433.64 ± 4.07 | 1030 ± 10 | 892 ± 23 | 1520 ± 69 |
Ca (mg/100 g) | 764.77 ± 2.86 | 263 ± 1 | 486 ± 5 | 535 ± 17 |
Mg (mg/100 g) | 306.06 ± 1.32 | 703 ± 4 | 943 ± 8 | 1019 ± 52 |
P (mg/100 g) | 183.93 ± 2.68 | - | - | 155 ± 9 |
Fe (mg/100 g) | 9.92 ± 0.67 | 128 ± 5 | 153 ± 2 | 8.64 ± 0 |
Mn (mg/100 g) | 6.87 ± 0.16 | 6.52 ± 0.03 | 20.4 ± 0. 4 | - |
Zn (mg/100 g) | 2.93 ± 0.22 | 2.52 ± 0.01 | 6.87 ± 0.01 | 3.5 ± 0.12 |
Cu (mg/100 g) | 0.94 ± 0.08 | - | - | 0.79 ± 0.12 |
I (mg/100 g) | 0.05 ± 0.02 | - | - | - |
Cd (µg/100 g) | 89.02 ± 0.47 | 19 ± 0.00 | nd | 8.63 ± 0.00 |
Pb (µg/100 g) | 17.91 ± 0.55 | 131 ± 2 | 145 ± 2 | 17.27 ± 8.64 |
Hg (µg/100 g) | 6.98 ± 0.10 | - | - | - |
Cr (µg/100 g) | - | 492 ± 11 | 524 ± 5 | - |
3.4. Total Phenolic and Flavonoid Content
3.5. Antioxidant and Enzymatic Activities
3.6. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Martins-Noguerol, R.; Cambrollé, J.; Mancilla-Leytón, J.; Puerto-Marchena, A.; Muñoz-Vallés, S.; Millán-Linares, M.; Millán, F.; Martínez-Force, E.; Figueroa, M.; Pedroche, J.; et al. Influence of soil salinity on the protein and fatty acid composition of the edible halophyte Halimione portulacoides. Food Chem. 2021, 352, 129370. [Google Scholar] [CrossRef]
- Barroca, M.J.; Guiné, R.P.F.; Amado, A.M.; Ressurreição, S.; Da Silva, A.M.; Marques, M.P.M.; De Carvalho, L.A.E.B. The drying process of Sarcocornia perennis: Impact on nutritional and physico-chemical properties. J. Food Sci. Technol. 2020, 57, 4443–4458. [Google Scholar] [CrossRef]
- Custódio, M.; Maciel, E.; Domingues, M.R.; Lillebø, A.I.; Calado, R. Nutrient availability affects the polar lipidome of Halimione portulacoides leaves cultured in hydroponics. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Cambrollé, J.; Mancilla-Leytón, J.M.; Muñoz-Vallés, S.; Cambrón-Sena, A.; Figueroa, M.E. Advances in the use of Halimione portulacoides stem cuttings for phytoremediation of Zn-polluted soils. Estuarine. Coast. Shelf Sci. 2016, 175, 10–14. [Google Scholar] [CrossRef]
- Andrades-Moreno, L.; Cambrollé, J.; Figueroa, M.; Mateos-Naranjo, E. Growth and survival of Halimione portulacoides stem cuttings in heavy metal contaminated soils. Mar. Pollut. Bull. 2013, 75, 28–32. [Google Scholar] [CrossRef]
- Anjum, N.A.; Israr, M.; Duarte, A.C.; Pereira, M.E.; Ahmad, I. Halimione portulacoides (L.) physiological/biochemical characterization for its adaptive responses to environmental mercury exposure. Environ. Res. 2014, 131, 39–49. [Google Scholar] [CrossRef]
- Brito, P.; Ferreira, R.A.; Martins-Dias, S.; Azevedo, O.M.; Caetano, M.; Caçador, I. Cerium uptake, translocation and toxicity in the salt marsh halophyte Halimione portulacoides(L.), Aellen. Chemosphere 2020, 266, 128973. [Google Scholar] [CrossRef]
- Custódio, M.; Villasante, S.; Calado, R.; Lillebø, A.I. Testing the hydroponic performance of the edible halophyte Halimione portulacoides, a potential extractive species for coastal integrated multi-trophic aquaculture. Sci. Total Environ. 2020, 766, 144378. [Google Scholar] [CrossRef]
- Válega, M.; Lillebø, A.; Caçador, I.; Pereira, M.; Duarte, A.; Pardal, M. Mercury mobility in a salt marsh colosined by Halimione portulacoides. Chemosphere 2008, 72, 1607–1613. [Google Scholar] [CrossRef] [Green Version]
- Zanella, L.; Vianello, F. Functional food from endangered ecosystems: Atriplex portulacoides as a case study. Foods 2020, 9, 1533. [Google Scholar] [CrossRef] [PubMed]
- Marins, V.C.M. Comunidade bacteriana endofítica cultivável de Halimione portulacoides. Master’s Thesis, Universidade de Aveiro, Aveiro, Portugal, 2011. [Google Scholar]
- Maciel, E.; Lillebø, A.; Domingues, P.; da Costa, E.; Calado, R.; Domingues, M.R.M. Polar lipidome profiling of Salicornia ramosissima and Halimione portulacoides and the relevance of lipidomics for the valorization of halo-phytes. Phytochemistry 2018, 153, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.M.; Shah, M.H.; Khan, M.A. Wild Edible Vegetables of Lesser Himalayas: Ethnobotanical and Nutraceutical Aspects; Springer International Publishing: Berlin, Germany, 2015; Volume 1, pp. 1–360. [Google Scholar]
- Faustino, M.A.; Pinto, D.C.G.A. Halophytic grasses, a new source of nutraceuticals? A review on their secondary metabolites and biological activities. Int. J. Mol. Sci. 2019, 20, 1067. [Google Scholar] [CrossRef] [Green Version]
- Odrigues, M.J.; Gangadhar, K.N.; Vizetto-Duarte, C.; Wubshet, S.G.; Nyberg, N.T.; Barreira, L.; Varela, J.; Custódio, L. Maritime halophyte species from southern Portugal as sources of bioactive molecules. Mar. Drugs 2014, 12, 2228–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valavanidis, A.; Vlachogianni, T. Plant Polyphenols: Recent Advances in Epidemiological Research and Other Studies on Cancer Prevention, 1st ed.; Elsevier BV: Amsterdam, The Netherlands, 2013; Volume 39, pp. 269–295. [Google Scholar]
- Vilela, C.; Santos, S.; Coelho, D.; Silva, A.; Freire, C.; Neto, C.; Silvestre, A. Screening of lipophilic and phenolic extractives from different morphological parts of Halimione portulacoides. Ind. Crop. Prod. 2014, 52, 373–379. [Google Scholar] [CrossRef]
- Aberoumand, A.; Deokule, S.S. Determination of elements profile of some wild edible plants. Food Anal. Methods 2008, 2, 116–119. [Google Scholar] [CrossRef] [Green Version]
- Everest, A.; Ozturk, E. Focusing on the ethnobotanical uses of plants in Mersin and Adana provinces (Turkey). J. Ethnobiol. Ethnomed. 2005, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint, F.; World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Third [73rd] Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Kant, S.; Kant, P.; Lips, H.; Barak, S. Partial substitution of NO3− by NH4+ fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley. J. Plant Physiol. 2007, 164, 303–311. [Google Scholar] [CrossRef]
- Castro, R.; Pereira, S.; Lima, A.; Corticeiro, S.; Valega, M.; Pereira, E.; Duarte, A.; Figueira, E. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 2009, 76, 1348–1355. [Google Scholar] [CrossRef]
- Cabrita, M.T.; Duarte, B.; Cesário, R.; Mendes, R.; Hintelmann, H.; Eckey, K.; Dimock, B.; Caçador, I.; Canário, J. Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms. Sci. Total Environ. 2018, 650, 111–120. [Google Scholar] [CrossRef]
- Anoè, N.; Calzavara, D.; Salviato, L.; Zanaboni, A. Flora E Vegetazione delle Barene. Gli Ambienti Salmastri della Laguna di Venezia; Soc Veneziana di Scienze Naturali: Venezia, Italy, 2001; Volume 26, pp. 9–84. [Google Scholar]
- European Union. Regulation (eu) no 1169/2011 of the European Parliament and of the Council; European Union: Bruxelles, Belgium, 2011; No 1169/2011. [Google Scholar]
- ISO:6869. Animal Feeding Stuffs–Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc–Method Using Atomic Absorption Spectrometry; ISO: Geneva, Switzerland, 2000. [Google Scholar]
- European Union. Foodstuffs—Determination of Trace Elements—Determination of Lead, Cadmium, Zinc, Copper, Iron and Chromium by Atomic Absorption Spectrometry (AAS) after Dry Ashing; European Union: Bruxelles, Belgium, 2003; Volume EN 14082:2003. [Google Scholar]
- International Organization for Standardization. Animal Feeding Stuffs—Determination of Phosphorus Content—Spectrometric Method; ISO: Geneva, Switzerland, 1998; Volume ISO 6491. [Google Scholar]
- de Guiné, R.P.F.; Barroca, M.J. Mass Transfer Properties for the Drying of Pears. In Transactions on Engineering Technologies; Springer: Berlin, Germany, 2014; pp. 271–280. [Google Scholar]
- Marques, J.M.D.; Amado, A.M.; Lysenko, V.; Osório, N.; Batista de Carvalho, L.A.E.; Marques, M.P.M.; Barroca, M.J.; Moreira da Silva, A. Novel insights into Corema album berries: Vibrational profile and biological activity. Plants 2021, 10, 1761, under revision. [Google Scholar] [CrossRef]
- ISO:7304-1. Durum Wheat Semolina and Alimentary Pasta—Estimation of Cooking Quality of Alimentary Pasta by Sensory Analysis—Part 1: Reference Method; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Bertin, R.L.; Gonzaga, L.V.; Borges, G.d.S.C.; Azevedo, M.S.; Maltez, H.F.; Heller, M.; Micke, G.A.; Tavares, L.B.B.; Fett, R. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Res. Int. 2014, 55, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Briens, M.; Larher, F. Osmoregulation in halophytic higher plants: A comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ. 1982, 5, 287–292. [Google Scholar]
- Baeza-Jiménez, R.; López-Martínez, L.X.; García-Varela, R.; García, H.S. Lipids in Fruits and Vegetables: Chemistry and Biological Activities, Fruit and Vegetable Phytochemicals: Chemistry and Human Health; Yahia, E.M., Ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 423–449. [Google Scholar]
- Lupton, J.R.; Brooks, J.; Butte, N.; Caballero, B.; Flatt, J.; Fried, S. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academy Press: Washington, DC, USA, 2002; Volume 5, pp. 589–768. [Google Scholar]
- Pedreiro, S.; da Ressurreição, S.; Lopes, M.; Cruz, M.T.; Batista, T.; Figueirinha, A.; Ramos, F. Crepis vesicaria L. subsp. taraxacifolia leaves: Nutritional profile, phenolic composition and biological properties. Int. J. Environ. Res. Public Health 2021, 18, 151. [Google Scholar] [CrossRef]
- Zhu, J.; Qi, J.; Fang, Y.; Xiao, X.; Li, J.; Lan, J.; Tang, C. Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of Hevea brasiliensis. Front. Plant Sci. 2018, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Trouvelot, S.; Héloir, M.-C.; Poinssot, B.; Gauthier, A.; Paris, F.; Guillier, C.; Combier, M.; Trdá, L.; Daire, X.; Adrian, M. Carbohydrates in plant immunity and plant protection: Roles and potential application as foliar sprays. Front. Plant Sci. 2014, 5, 592. [Google Scholar] [CrossRef] [Green Version]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Glassworts: From wild salt marsh species to sustainable edible crops. Agriculture 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Borah, S.; Baruah, A.M.; Das, A.K.; Borah, J. Determination of mineral content in commonly consumed leafy vegetables. Food Anal. Methods 2008, 2, 226–230. [Google Scholar] [CrossRef]
- Authority, E.F.S. Tolerable Upper Intake Levels for Vitamins and Minerals; EFSA: Parma, Italy, 2006. [Google Scholar]
- WHO. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- WHO. Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- FDA. Food Labeling: Revision of the Nutrition and Supplement Facts Labels. Available online: https://s3.amazonaws.com/public-inspection.federalregister.gov/2016-11867.pdf (accessed on 6 June 2021).
- Hessini, K.; Gandour, M.; Megdich, W.; Soltani, A.; Abdely, C. How does ammonium nutrition influence salt tolerance in Spartina alterniflora Loisel? In Salinity and Water Stress; Springer: Berlin, Germany, 2009; pp. 91–96. [Google Scholar]
- Lu, D.; Zhang, M.; Wang, S.; Cai, J.; Zhou, X.; Zhu, C. Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT 2010, 43, 519–524. [Google Scholar] [CrossRef]
- Milić, D.; Luković, J.; Ninkov, J.; Zeremski-Škorić, T.; Zorić, L.; Vasin, J.; Milić, S. Heavy metal content in halophytic plants from inland and maritime saline areas. Cent. Eur. J. Biol. 2012, 7, 307–317. [Google Scholar] [CrossRef]
- Reboredo, F. Zinc compartmentation in Halimione portulacoides (L.) Aellen and some effects on leaf ultrastructure. Environ. Sci. Pollut. Res. 2012, 19, 2644–2657. [Google Scholar] [CrossRef] [PubMed]
- Opazo, M.C.; Coronado-Arrázola, I.; Vallejos, O.P.; Moreno-Reyes, R.; Fardella, C.; Mosso, L.; Kalergis, A.M.; Bueno, S.M.; Riedel, C.A. The impact of the micronutrient iodine in health and diseases. Crit. Rev. Food Sci. Nutr. 2020, 1–14. [Google Scholar] [CrossRef]
- Haldimann, M.; Alt, A.; Blanc, A.; Blondeau, K. Iodine content of food groups. J. Food Composit. Anal. 2005, 18, 461–471. [Google Scholar] [CrossRef]
- Müssig, K. Iodine-induced toxic effects due to seaweed consumption. In Comprehensive Handbook of Iodine: Nutritional, Biochemical, Pathological and Therapeutic Aspects; Preedy, V.R., Burrow, G.N., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 897–908. [Google Scholar]
- Caetano, M.; Vale, C.; Cesário, R.; Fonseca, N. Evidence for preferential depths of metal retention in roots of salt marsh plants. Sci. Total Environ. 2008, 390, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar]
- EC Commission. Setting Maximum Levels for Certain Contaminants in Foodstuffs; European Commission: Brussels, Belgium, 2001; No 466/2001. [Google Scholar]
- Redondo-Gómez, S.; Mateos-Naranjo, E.; Figueroa, M.; Davy, A. Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol. 2010, 12, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.D. Metals and Butyltins in Sediments of Ria Formosa—The Role of Spartina maritima and Sarcocornia fruticosa; University of Porto: Porto, Portugal, 2008. [Google Scholar]
- Zengin, G.; Aumeeruddy-Elalfi, Z.; Mollica, A.; Yilmaz, M.A.; Mahomoodally, M.F. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—A source of innovative phytopharmaceuticals from nature. Phytomedicine 2018, 38, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Hazra, A.K.; Chakraborti, S.; Ray, J.; Mukherjee, A.; Mukherjee, B. Variation of total phenolic con-tent, flavonoid and radical scavenging activity of Ipomoea pes-caprae with respect to harvesting time and lo-cation. Ind. J. Mar. Sci. 2013, 42, 106–109. [Google Scholar]
- Yagi, A.; Uemura, T.; Okamura, N.; Haraguchi, H.; Imoto, T.; Hashimoto, K. Antioxidative sulphated flavonoids in leaves of Polygonum hydropiper. Phytochemistry 1994, 35, 885–887. [Google Scholar] [CrossRef]
- Oueslati, S.; Trabelsi, N.; Boulaaba, M.; Legault, J.; Abdelly, C.; Ksouri, R. Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds. Ind. Crop. Prod. 2012, 36, 513–518. [Google Scholar] [CrossRef]
- Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R. Sideritis galatica Bornm: A source of multifunctional agents for the management of oxidative damage, Alzheimer’s and diabetes mellitus. J. Funct. Foods 2014, 11, 538–547. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Pereira, C.A.; Oliveira, M.; Neng, N.R.; Nogueira, J.M.; Zengin, G.; Mahomoodally, M.F.; Custódio, L. Sea rose (Armeria pungens (Link) Hoffmanns. & Link) as a potential source of innovative industrial products for anti-ageing applications. Ind. Crop. Prod. 2018, 121, 250–257. [Google Scholar] [CrossRef]
Composition | Raw Matter | Dry Matter |
---|---|---|
Energy (kcal/100 g) | 48.03 ± 0.06 | 218.59 ± 0.30 |
Moisture (g/100 g) | 78.03 ± 0.01 | - |
Ash (g/100 g) | 6.09 ± 0.02 | 27.70 ± 0.09 |
Dietary fiber (g/100 g) | 8.90 ± 0.01 | 40.49 ± 0.06 |
Crude fiber (g/100 g) | 4.54 ± 0.01 | 20.64 ± 0.07 |
Protein (g/100 g) | 2.08 ± 0.02 | 9.47 ± 0.07 |
Lipids (g/100 g) | 0.46 ± 0.01 | 2.07 ± 0.05 |
Carbohydrates * (g/100 g) | 4.45 ± 0.01 | 20.26 ± 0.06 |
Composition | Raw Matter mg/100 g | Intake Provided by 100 Fresh Leaves (%) |
---|---|---|
Sodium, Na | 1799.38 ± 13.98 | 78.0 |
Potassium, K | 314.97 ± 0.89 | 9.5 |
Calcium, Ca | 168.02 ± 0.63 | 24.0 |
Magnesium, Mg | 67.24 ± 0.29 | 28.0 |
Phosphorus, P | 40.41 ± 1.58 | 7.3 |
Iron, Fe | 2.18 ± 0.15 | 7.6 |
Manganese, Mn | 1.51 ± 0.04 | 73.7 |
Zinc, Zn | 0.64 ± 0.05 | 7.8 |
Copper, Cu | 0.21 ± 0.02 | 16.8 |
Iodine, I | 0.011 ± 0.004 | 7.3 |
Assay | H. portulacoides Extract |
---|---|
Chemical composition | |
TPC (mg GAE/g extract) | 16.10 ± 0.20 |
TFC (mg QCE/g extract) | 26.60 ± 0.80 |
Antioxidant activity | |
DPPH (IC50 mg/mL) | 3.70 ± 0.40 |
ABTS (IC50 mg/mL) | >5 |
β-carotene/linoleic acid (IC50 mg/mL) | 0.15 ± 0.03 |
Lipid peroxidation (IC50 mg/mL) | >5 |
Metal chelating ability (IC50 mg/mL) | 2.30 ± 0.50 |
FRAP (mg TE/g extract) | 19.90 ± 1.90 |
CUPRAC (mg TE/g extract) | 44.00 ± 2.30 |
Enzymatic activity | |
AChE inhibition (IC50 mg/mL) | >5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, A.; Agreira, S.; Ressurreição, S.; Marques, J.; Guiné, R.; Barroca, M.J.; Moreira da Silva, A. Sea Purslane as an Emerging Food Crop: Nutritional and Biological Studies. Appl. Sci. 2021, 11, 7860. https://doi.org/10.3390/app11177860
Pires A, Agreira S, Ressurreição S, Marques J, Guiné R, Barroca MJ, Moreira da Silva A. Sea Purslane as an Emerging Food Crop: Nutritional and Biological Studies. Applied Sciences. 2021; 11(17):7860. https://doi.org/10.3390/app11177860
Chicago/Turabian StylePires, Arona, Sílvia Agreira, Sandrine Ressurreição, Joana Marques, Raquel Guiné, Maria João Barroca, and Aida Moreira da Silva. 2021. "Sea Purslane as an Emerging Food Crop: Nutritional and Biological Studies" Applied Sciences 11, no. 17: 7860. https://doi.org/10.3390/app11177860
APA StylePires, A., Agreira, S., Ressurreição, S., Marques, J., Guiné, R., Barroca, M. J., & Moreira da Silva, A. (2021). Sea Purslane as an Emerging Food Crop: Nutritional and Biological Studies. Applied Sciences, 11(17), 7860. https://doi.org/10.3390/app11177860