An Algorithm for Fast Multiplication of Kaluza Numbers
Abstract
:1. Introduction
2. Preliminary Remarks
3. Synthesis of a Rationalized Algorithm for Computing Kaluza Numbers Product
4. Evaluation of Computational Complexity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kantor, I.L.; Solodovnikov, A.S. Hypercomplex Numbers: An Elementary Introduction to Algebras; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Alfsmann, D. On families of 2N-dimensional hypercomplex algebras suitable for digital signal processing. In Proceedings of the 2006 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006; pp. 1–4. [Google Scholar]
- Alfsmann, D.; Göckler, H.G.; Sangwine, S.J.; Ell, T.A. Hypercomplex algebras in digital signal processing: Benefits and drawbacks. In Proceedings of the 2007 15th European Signal Processing Conference, Poznan, Poland, 3–7 September 2007; pp. 1322–1326. [Google Scholar]
- Bayro-Corrochano, E. Multi-resolution image analysis using the quaternion wavelet transform. Numer. Algorithms 2005, 39, 35–55. [Google Scholar] [CrossRef]
- Belfiore, J.C.; Rekaya, G. Quaternionic lattices for space-time coding. In Proceedings of the 2003 IEEE Information Theory Workshop (Cat. No. 03EX674), Paris, France, 31 March–4 April 2003; pp. 267–270. [Google Scholar]
- Bulow, T.; Sommer, G. Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 2001, 49, 2844–2852. [Google Scholar] [CrossRef] [Green Version]
- Calderbank, R.; Das, S.; Al-Dhahir, N.; Diggavi, S. Construction and analysis of a new quaternionic space-time code for 4 transmit antennas. Commun. Inf. Syst. 2005, 5, 97–122. [Google Scholar]
- Ertuğ, Ö. Communication over Hypercomplex Kähler Manifolds: Capacity of Multidimensional-MIMO Channels. Wirel. Person. Commun. 2007, 41, 155–168. [Google Scholar] [CrossRef]
- Le Bihan, N.; Sangwine, S. Hypercomplex analytic signals: Extension of the analytic signal concept to complex signals. In Proceedings of the 15th European Signal Processing Conference (EUSIPCO-2007), Poznan, Poland, 3–7 September 2007; p. A5P–H. [Google Scholar]
- Moxey, E.C.; Sangwine, S.J.; Ell, T.A. Hypercomplex correlation techniques for vector images. IEEE Trans. Signal Process. 2003, 51, 1941–1953. [Google Scholar] [CrossRef]
- Comminiello, D.; Lella, M.; Scardapane, S.; Uncini, A. Quaternion convolutional neural networks for detection and localization of 3d sound events. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8533–8537. [Google Scholar]
- de Castro, F.Z.; Valle, M.E. A broad class of discrete-time hypercomplex-valued Hopfield neural networks. Neural Netw. 2020, 122, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Gaudet, C.J.; Maida, A.S. Deep quaternion networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Isokawa, T.; Kusakabe, T.; Matsui, N.; Peper, F. Quaternion neural network and its application. In Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Oxford, UK, 3–5 September 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 318–324. [Google Scholar]
- Liu, Y.; Zheng, Y.; Lu, J.; Cao, J.; Rutkowski, L. Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1022–1035. [Google Scholar] [CrossRef]
- Parcollet, T.; Morchid, M.; Linarès, G. A survey of quaternion neural networks. Artif. Intell. Rev. 2020, 53, 2957–2982. [Google Scholar] [CrossRef]
- Saoud, L.S.; Ghorbani, R.; Rahmoune, F. Cognitive quaternion valued neural network and some applications. Neurocomputing 2017, 221, 85–93. [Google Scholar] [CrossRef]
- Saoud, L.S.; Ghorbani, R. Metacognitive octonion-valued neural networks as they relate to time series analysis. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Vecchi, R.; Scardapane, S.; Comminiello, D.; Uncini, A. Compressing deep-quaternion neural networks with targeted regularisation. CAAI Trans. Intell. Technol. 2020, 5, 172–176. [Google Scholar] [CrossRef]
- Vieira, G.; Valle, M.E. A General Framework for Hypercomplex-valued Extreme Learning Machines. arXiv 2021, arXiv:2101.06166. [Google Scholar]
- Wu, J.; Xu, L.; Wu, F.; Kong, Y.; Senhadji, L.; Shu, H. Deep octonion networks. Neurocomputing 2020, 397, 179–191. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Y.; Xu, H.; Chen, C. Quaternion convolutional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 631–647. [Google Scholar]
- Bojesomo, A.; Liatsis, P.; Marzouqi, H.A. Traffic flow prediction using Deep Sedenion Networks. arXiv 2020, arXiv:2012.03874. [Google Scholar]
- Saoud, L.S.; Al-Marzouqi, H. Metacognitive sedenion-valued neural network and its learning algorithm. IEEE Access 2020, 8, 144823–144838. [Google Scholar] [CrossRef]
- Cariow, A.; Cariowa, G.; Łentek, R. An algorithm for multipication of Kaluza numbers. arXiv 2015, arXiv:1505.06425. [Google Scholar]
- Silvestrov, V.V. Number Systems. Soros Educ. J. 1998, 8, 121–127. [Google Scholar]
- Ţariov, A. Algorithmic Aspects of Computing Rationalization in Digital Signal Processing. (Algorytmiczne Aspekty Racjonalizacji Obliczeń w Cyfrowym Przetwarzaniu Sygnałów); West Pomeranian University Press: Szczecin, Poland, 2012. (In Polish) [Google Scholar]
- Ţariov, A. Strategies for the synthesis of fast algorithms for the computation of the matrix-vector products. J. Signal Process. Theory Appl. 2014, 3, 1–19. [Google Scholar]
ine× | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
ine0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 1 | 0 | 6 | 7 | 8 | 9 | 2 | 3 | 4 | 5 | 16 | 17 | 18 | 19 | 20 | 21 |
2 | 2 | −6 | 0 | 10 | 11 | 12 | −1 | −16 | −17 | −18 | 3 | 4 | 5 | 22 | 23 | 24 |
3 | 3 | −7 | −10 | −0 | 13 | 14 | 16 | 1 | −19 | −20 | 2 | −22 | −23 | −4 | −5 | 25 |
4 | 4 | −8 | −11 | −13 | −0 | 15 | 17 | 19 | 1 | −21 | 22 | 2 | −24 | 3 | −25 | −5 |
5 | 5 | −9 | −12 | −14 | −15 | −0 | 18 | 20 | 21 | 1 | 23 | 24 | 2 | 25 | 3 | 4 |
6 | 6 | −2 | 1 | 16 | 17 | 18 | −0 | −10 | −11 | −12 | 7 | 8 | 9 | 26 | 27 | 28 |
7 | 7 | −3 | −16 | −1 | 19 | 20 | 10 | 0 | −13 | −14 | 6 | −26 | −27 | −8 | −9 | 29 |
8 | 8 | −4 | −17 | −19 | −1 | 21 | 11 | 13 | 0 | −15 | 26 | 6 | −28 | 7 | −29 | −9 |
9 | 9 | −5 | −18 | −20 | −21 | −1 | 12 | 14 | 15 | 0 | 27 | 28 | 6 | 29 | 7 | 8 |
10 | 10 | 16 | −3 | −2 | 22 | 23 | −7 | −6 | 26 | 27 | 0 | −13 | −14 | −11 | −12 | 30 |
11 | 11 | 17 | −4 | −22 | −2 | 24 | −8 | −26 | −6 | 28 | 13 | 0 | −15 | 10 | −30 | −12 |
12 | 12 | 18 | −5 | −23 | −24 | −2 | −9 | −27 | −28 | −6 | 14 | 15 | 0 | 30 | 10 | 11 |
13 | 13 | 19 | 22 | 4 | −3 | 25 | 26 | 8 | −7 | 29 | 11 | −10 | 30 | −0 | 15 | −14 |
14 | 14 | 20 | 23 | 5 | −25 | −3 | 27 | 9 | −29 | −7 | 12 | −30 | −10 | −15 | −0 | 13 |
15 | 15 | 21 | 24 | 25 | 5 | −4 | 28 | 29 | 9 | −8 | 30 | 12 | −11 | 14 | −13 | −1 |
ine |
ine× | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
ine0 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
1 | 10 | 11 | 12 | 13 | 14 | 15 | 26 | 27 | 28 | 29 | 22 | 23 | 24 | 25 | 31 | 30 |
2 | −7 | −8 | −9 | −26 | −27 | −28 | −13 | 14 | 15 | 30 | −19 | −20 | −21 | −31 | 25 | −29 |
3 | −6 | 26 | 27 | 8 | 9 | −29 | 11 | 12 | −30 | −15 | −17 | −18 | 31 | 21 | 24 | −28 |
4 | −26 | −6 | 28 | −7 | 29 | 9 | −10 | 30 | 12 | 14 | 16 | −31 | −18 | −20 | −23 | 27 |
5 | −27 | −28 | −6 | −29 | −7 | −8 | −30 | −10 | −11 | −13 | 31 | 16 | 17 | 19 | 22 | −26 |
6 | −3 | −4 | −5 | −22 | −23 | −24 | 19 | 20 | 21 | 31 | −13 | −14 | −15 | −30 | 29 | −25 |
7 | −2 | 22 | 23 | 4 | 5 | −25 | 17 | 18 | −31 | −21 | −11 | −12 | 30 | 15 | 28 | −24 |
8 | −22 | −2 | 24 | −3 | 25 | 5 | −16 | 31 | 18 | 20 | 10 | −30 | −12 | −14 | −27 | 23 |
9 | −23 | −24 | −2 | −25 | −3 | −4 | −31 | −16 | −17 | −19 | 30 | 10 | 11 | 13 | 26 | −22 |
10 | 1 | −19 | −20 | −17 | −18 | 31 | 4 | 5 | −25 | −24 | 8 | 9 | −29 | −28 | 15 | 21 |
11 | 19 | 1 | −21 | 16 | −31 | −18 | −3 | 25 | 5 | 23 | −7 | 29 | 9 | 27 | −14 | −20 |
12 | 20 | 21 | 1 | 31 | 16 | 17 | −25 | −3 | −4 | −22 | −29 | −7 | −8 | −26 | 13 | 19 |
13 | 17 | −16 | 31 | −1 | 21 | −20 | −2 | 24 | −23 | −5 | −6 | 28 | −27 | −9 | −12 | −18 |
14 | 18 | −31 | −16 | −21 | −1 | 19 | −24 | −2 | 22 | 4 | −28 | −6 | 26 | 8 | 11 | 17 |
15 | 31 | 18 | −17 | 20 | −19 | −1 | 23 | −22 | −2 | −3 | 27 | −26 | −6 | −7 | −10 | −16 |
ine |
ine× | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
ine16 | 16 | 10 | −7 | −6 | 26 | 27 | −3 | −2 | 22 | 23 | 1 | −19 | −20 | −17 | −18 | 31 |
17 | 17 | 11 | −8 | −26 | −6 | 28 | −4 | −22 | −2 | 24 | 19 | 1 | −21 | 16 | −31 | −18 |
18 | 18 | 12 | −9 | −27 | −28 | −6 | −5 | −23 | −24 | −2 | 20 | 21 | 1 | 31 | 16 | 17 |
19 | 19 | 13 | 26 | 8 | −7 | 29 | 22 | 4 | −3 | 25 | 17 | −16 | 31 | −1 | 21 | −20 |
20 | 20 | 14 | 27 | 9 | −29 | −7 | 23 | 5 | −25 | −3 | 18 | −31 | −16 | −21 | −1 | 19 |
21 | 21 | 15 | 28 | 29 | 9 | −8 | 24 | 25 | 5 | −4 | 31 | 18 | −17 | 20 | −19 | −1 |
22 | 22 | −26 | 13 | 11 | −10 | 30 | −19 | −17 | 16 | −31 | 4 | −3 | 25 | −2 | 24 | −23 |
23 | 23 | −27 | 14 | 12 | −30 | −10 | −20 | −18 | 31 | 16 | 5 | −25 | −3 | −24 | −2 | 22 |
24 | 24 | −28 | 15 | 30 | 12 | −11 | −21 | −31 | −18 | 17 | 25 | 5 | −4 | 23 | −22 | −2 |
25 | 25 | −29 | −30 | −15 | 14 | −13 | 31 | 21 | −20 | 19 | 24 | −23 | 22 | −5 | 4 | −3 |
26 | 26 | −22 | 19 | 17 | −16 | 31 | −13 | −11 | 10 | −30 | 8 | −7 | 29 | −6 | 28 | −27 |
27 | 27 | −23 | 20 | 18 | −31 | −16 | −14 | −12 | 30 | 10 | 9 | −29 | −7 | −28 | −6 | 26 |
28 | 28 | −24 | 21 | 31 | 18 | −17 | −15 | −30 | −12 | 11 | 29 | 9 | −8 | 27 | −26 | −6 |
29 | 29 | −25 | −31 | −21 | 20 | −19 | 30 | 15 | −14 | 13 | 28 | −27 | 26 | −9 | 8 | −7 |
30 | 30 | 31 | −25 | −24 | 23 | −22 | −29 | −28 | 27 | −26 | 15 | −14 | 13 | −12 | 11 | −10 |
31 | 31 | 30 | −29 | −28 | 27 | −26 | −25 | −24 | 23 | −22 | 21 | −20 | 19 | −18 | 17 | −16 |
ine |
ine× | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
ine16 | 0 | −13 | −14 | −11 | −12 | 30 | 8 | 9 | −29 | −28 | 4 | 5 | −25 | −24 | 21 | 15 |
17 | 13 | 0 | −15 | 10 | −30 | −12 | −7 | 29 | 9 | 27 | −3 | 25 | 5 | 23 | −20 | −14 |
18 | 14 | 15 | 0 | 30 | 10 | 11 | −29 | −7 | −8 | −26 | −25 | −3 | −4 | −22 | 19 | 13 |
19 | 11 | −10 | 30 | −0 | 15 | −14 | −6 | 28 | −27 | −9 | −2 | 24 | −23 | −5 | −18 | −12 |
20 | 12 | −30 | −10 | −15 | −0 | 13 | −28 | −6 | 26 | 8 | −24 | −2 | 22 | 4 | 17 | 11 |
21 | 30 | 12 | −11 | 14 | −13 | −0 | 27 | −26 | −6 | −7 | 23 | −22 | −2 | −3 | −16 | −10 |
22 | −8 | 7 | −29 | 6 | −28 | 27 | −0 | 15 | −14 | −12 | 1 | −21 | 20 | 18 | −5 | 9 |
23 | −9 | 29 | 7 | 28 | 6 | −26 | −15 | −0 | 13 | 11 | 21 | 1 | −19 | −17 | 4 | −8 |
24 | −29 | −9 | 8 | −27 | 26 | 6 | 14 | −13 | −0 | −10 | −20 | 19 | 1 | 16 | −3 | 7 |
25 | −28 | 27 | −26 | 9 | −8 | 7 | 12 | −11 | 10 | 0 | −18 | 17 | −16 | −1 | −2 | 6 |
26 | −4 | 3 | −25 | 2 | −24 | 23 | −1 | 21 | −20 | −18 | 0 | −15 | 14 | 12 | −9 | 5 |
27 | −5 | 25 | 3 | 24 | 2 | −22 | −21 | −1 | 19 | 17 | 15 | 0 | −13 | −11 | 8 | −4 |
28 | −25 | −5 | 4 | −23 | 22 | 2 | 20 | −19 | −1 | −16 | −14 | 13 | 0 | 10 | −7 | 3 |
29 | −24 | 23 | −22 | 5 | −4 | 3 | 18 | −17 | 16 | 1 | −12 | 11 | −10 | −0 | −6 | 2 |
30 | 21 | −20 | 19 | −18 | 17 | −16 | 5 | −4 | 3 | 2 | 9 | −8 | 7 | 6 | −0 | −1 |
31 | 15 | −14 | 13 | −12 | 11 | −10 | 9 | −8 | 7 | 6 | 5 | −4 | 3 | 2 | −1 | −1 |
ine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cariow, A.; Cariowa, G.; Paplinski, J.P. An Algorithm for Fast Multiplication of Kaluza Numbers. Appl. Sci. 2021, 11, 8203. https://doi.org/10.3390/app11178203
Cariow A, Cariowa G, Paplinski JP. An Algorithm for Fast Multiplication of Kaluza Numbers. Applied Sciences. 2021; 11(17):8203. https://doi.org/10.3390/app11178203
Chicago/Turabian StyleCariow, Aleksandr, Galina Cariowa, and Janusz P. Paplinski. 2021. "An Algorithm for Fast Multiplication of Kaluza Numbers" Applied Sciences 11, no. 17: 8203. https://doi.org/10.3390/app11178203
APA StyleCariow, A., Cariowa, G., & Paplinski, J. P. (2021). An Algorithm for Fast Multiplication of Kaluza Numbers. Applied Sciences, 11(17), 8203. https://doi.org/10.3390/app11178203