Design and Implementation of Novel Efficient Full Adder/Subtractor Circuits Based on Quantum-Dot Cellular Automata Technology
Abstract
:1. Introduction
2. Background
2.1. The Basis of Quantum-Dot Cellular Automata (QCA) Technology
2.2. QCA Four-Phase Clock
2.3. QCA Four-Phase Clock
2.4. Related Work
3. The Proposed Circuits
3.1. FA/S Circuits Design
3.2. Simulation Results
4. Guidelines of Performance Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohammadi, Z.; Mohammadi, M. Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process. 2014, 13, 2127–2147. [Google Scholar] [CrossRef]
- Tougaw, P.D.; Lent, C.S. Logical devices implemented using quantum cellular automata. J. Appl. Phys. 1994, 75, 1818–1825. [Google Scholar] [CrossRef]
- Cho, H.; Swartzlander, E.E. Adder Designs and Analyses for Quantum-Dot Cellular Automata. IEEE Trans. Nanotechnol. 2007, 6, 374–383. [Google Scholar] [CrossRef]
- Huang, J.; Momenzadeh, M.; Tahoori, M.B.; Lombardi, F. Design and characterization of an and-or-inverter (AOI) gate for QCA implementation. In Proceedings of the 14th ACM Great Lakes Symposium on VLSI 2004, Boston, MA, USA, 26–28 April 2004; pp. 426–429. [Google Scholar] [CrossRef]
- Abedi, D.; Jaberipur, G.; Sangsefidi, M. Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 2015, 14, 497–504. [Google Scholar] [CrossRef]
- Fortes, J.A. Future challenges in VLSI system design. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 20–21 February 2003; pp. 5–7. [Google Scholar]
- Frost, S.E.; Rodrigues, A.F.; Janiszewski, A.W.; Rausch, R.T.; Kogge, P.M. Memory in motion: A study of storage structures in QCA. In Proceedings of the First Workshop on Non-Silicon Computing, Cambridge, MA, USA, 3 February 2002; Volume 2. [Google Scholar]
- Wang, W.; Walus, K.; Jullien, G.A. Quantum-dot cellular automata adders. In Proceedings of the 2003 Third IEEE Conference on Nanotechnology, San Francisco, CA, USA, 12–14 August 2003; Volume 1, pp. 461–464. [Google Scholar]
- Kianpour, M.; Sabbaghi-Nadooshan, R. Optimized Design of Multiplexor by Quantum-dot Cellular Automata. Int. J. Nanosci. Nanotechnol. 2013, 9, 15–24. [Google Scholar]
- Beigh, M.R.; Mustafa, M.; Ahmad, F. Performance Evaluation of Efficient XOR Structures in Quantum-Dot Cellular Automata (QCA). Circuits Syst. 2013, 4, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Swartzlander, E.E.; Cho, H.; Kong, I.; Kim, S.W. Computer arithmetic implemented with QCA: A progress report. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 1392–1398. [Google Scholar]
- Modi, S.; Tomar, A.S. Logic gate implementations for quantum dot cellular automata. In Proceedings of the 2010 International Conference on Computational Intelligence and Communication Networks, Bhopal, India, 26–28 November 2010. [Google Scholar]
- Barughi, Y.Z.; Heikalabad, S.R. A Three-Layer Full Adder/Subtractor Structure in Quantum-Dot Cellular Automata. Int. J. Theor. Phys. 2017, 56, 2848–2858. [Google Scholar] [CrossRef]
- Zoka, S.; Gholami, M. A novel efficient full adder–subtractor in QCA nanotechnology. Int. Nano Lett. 2018, 9, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Navi, K.; Dolatshahi, M. Novel efficient full adder and full subtractor designs in quantum cellular automata. J. Supercomput. 2019, 76, 2191–2205. [Google Scholar] [CrossRef]
- Raj, M.; Gopalakrishnan, L.; Ko, S.-B. Design and analysis of novel QCA full adder-subtractor. Int. J. Electron. Lett. 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Vahabi, M.; Sabbagh Molahosseini, A. A New Coplanar Full Adder/Subtractor in Quantum-Dot Cellular Automata Technology. Majlesi J. Telecommun. Devices 2018, 7, 53–63. [Google Scholar]
- Chabi, A.M.; Roohi, A.; Khademolhosseini, H.; Sheikhfaal, S.; Angizi, S.; Navi, K.; DeMara, R.F. Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 2017, 49, 127–138. [Google Scholar] [CrossRef]
- Gladshtein, M. Design and simulation of novel adder/subtractors on quantum-dot cellular automata: Radical departure from Boolean logic circuits. Microelectron. J. 2013, 44, 545–552. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmed, S.; Kakkar, V.; Bhat, G.M.; Bahar, A.N.; Wani, S. Modular design of ultra-efficient reversible full adder-subtractor in QCA with power dissipation analysis. Int. J. Theor. Phys. 2018, 57, 2863–2880. [Google Scholar] [CrossRef]
Bout | Cout | S\D | Cin | B | A |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 |
Parameter | Value |
---|---|
Cell width | 18 nm |
Cell height | 18 nm |
Dot diameter | 5 nm |
Number of samples | 12,800 |
Convergence tolerance | 0.001 |
Radius of effect | 65 nm |
Relative permittivity | 12.9 |
Clock high | 9.8 × 10−22 J |
Clock low | 3.8 × 10−23 J |
Clock amplitude factor | 2 |
Layer separation | 11.5 nm |
Maximum iteration per sample | 100 |
Crossover Type | Latency (clock) | Cell Count | Area (µm2) | Circuit |
---|---|---|---|---|
Multi-Layer | 1.5 | 90 | 0.6 | [13] |
Coplanar (clocking based) | 1.5 | 83 | 0.09 | [14] |
Coplanar (rotated cells) | 1 | 82 | 0.11 | [15] |
Coplanar (rotated cells) | 0.75 | 75 | 0.09 | [16] |
Coplanar (clocking based) | 1 | 92 | 0.09 | [17]-a |
Coplanar (clocking based) | 1 | 84 | 0.09 | [17]-b |
Coplanar (clocking based) | 0.75 | 68 | 0.072 | Proposed A |
Coplanar (clocking based) | 0.75 | 67 | 0.072 | Proposed B |
Coplanar (rotated cells) | 0.5 | 65 | 0.067 | Proposed C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahabi, M.; Lyakhov, P.; Bahar, A.N. Design and Implementation of Novel Efficient Full Adder/Subtractor Circuits Based on Quantum-Dot Cellular Automata Technology. Appl. Sci. 2021, 11, 8717. https://doi.org/10.3390/app11188717
Vahabi M, Lyakhov P, Bahar AN. Design and Implementation of Novel Efficient Full Adder/Subtractor Circuits Based on Quantum-Dot Cellular Automata Technology. Applied Sciences. 2021; 11(18):8717. https://doi.org/10.3390/app11188717
Chicago/Turabian StyleVahabi, Mohsen, Pavel Lyakhov, and Ali Newaz Bahar. 2021. "Design and Implementation of Novel Efficient Full Adder/Subtractor Circuits Based on Quantum-Dot Cellular Automata Technology" Applied Sciences 11, no. 18: 8717. https://doi.org/10.3390/app11188717
APA StyleVahabi, M., Lyakhov, P., & Bahar, A. N. (2021). Design and Implementation of Novel Efficient Full Adder/Subtractor Circuits Based on Quantum-Dot Cellular Automata Technology. Applied Sciences, 11(18), 8717. https://doi.org/10.3390/app11188717