Biomechanical Analysis of Gait Compensation Strategies as a Result of Muscle Restriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Apparatus
2.3. Protocol
2.4. Data Processing
The Institutional Review Board of Nagoya University, Japan, approved the study and registered it under approval Number, 14-4.
3. Results
3.1. Joint Compensation
3.2. Joint Motion in C-Restriction
3.3. Joint Motion in CT-Restriction
3.4. Gait Timing
4. Discussion
4.1. Compensation Strategies
4.1.1. C-Restriction
4.1.2. CT-Restriction
4.2. Joint Motion Compensation and Weakness: Similarities and Differences with the Elderly
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RF | rectus femoris |
VAS | vastii |
BFS | biceps femoris short head |
GAS | gastrocnemius |
SO | soleus |
TA | tibialis anterior |
HAM | hamstring |
ILPS | iliopsoas |
MARTT | Muscle Activity Restriction Taping Technique |
MTC | minimum toe clearance |
HC | heel contact |
TO | toe off |
C-restriction | calf restriction |
CT-restriction | calf and thigh restriction |
References
- Hollmann, W.; Strüder, H.; Tagarakis, C.; King, G. Physical activity and the elderly. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 730–739. [Google Scholar] [CrossRef]
- Lamoureux, E.L.; Sparrow, W.A.; Murphy, A.; Newton, R.U. Differences in the neuromuscular capacity and lean muscle tissue in old and older community-dwelling adults. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M381–M385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frontera, W.R.; Hughes, V.A.; Fielding, R.A.; Fiatarone, M.A.; Evans, W.J.; Roubenoff, R. Aging of skeletal muscle: A 12-year longitudinal study. J. Appl. Physiol. 2000, 88, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS ONE 2014, 9, e111810. [Google Scholar]
- McCormick, R.; Vasilaki, A. Age-related changes in skeletal muscle: Changes to life-style as a therapy. Biogerontology 2018, 19, 519–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akima, H.; Kano, Y.; Enomoto, Y.; Ishizu, M.; Okada, M.; Oishi, Y.; Katsuta, S.; Kuno, S. Muscle function in 164 men and women aged 20–84 year. Med. Sci. Sports Exerc. 2001, 33, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 year. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikezoe, T.; Mori, N.; Nakamura, M.; Ichihashi, N. Age-related muscle atrophy in the lower extremities and daily physical activity in elderly women. Arch. Gerontol. Geriatr. 2011, 53, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Kirkwood, R.N.; Trede, R.G.; Moreira, B.; Kirkwood, S.A.; Pereira, L.S. Decreased gastrocnemius temporal muscle activation during gait in elderly women with history of recurrent falls. Gait Posture 2011, 34, 60–64. [Google Scholar] [CrossRef]
- Schmitz, A.; Silder, A.; Heiderscheit, B.; Mahoney, J.; Thelen, D. Differences in lower-extremity muscular activation during walking between healthy older and young adults. J. Electromyogr. Kinesiol. 2009, 19, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Begg, R.K.; Sparrow, W.A. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle. J. Med. Eng. Technol. 2006, 30, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Aniansson, A.; Grimby, G.; Hedberg, M. Compensatory muscle fiber hypertrophy in elderly men. J. Appl. Physiol. 1992, 73, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.D. Foot drop: Where, why and what to do? Pract. Neurol. 2008, 8, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly: A clinical guide. Wien Klin. Wochenschr. 2017, 129, 81–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVita, P.; Hortobagyi, T. Age causes a redistribution of joint torques and powers during gait. J. Appl. Physiol. 2000, 88, 1804–1811. [Google Scholar] [CrossRef] [Green Version]
- Mill, P.; Barret, R.S. Swing phase mechanics of healthy young and elderly men. Hum. Mov. Sci. 2001, 20, 427–446. [Google Scholar] [CrossRef]
- Van der Krogt, M.M.; Delp, S.L.; Schwartz, M.H. How robust is human gait to muscle weakness? Gait Posture 2012, 36, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Ullauri, J.B.; Akiyama, Y.; Okamoto, S.; Yamada, Y. Technique to reduce the minimum toe clearance of young adults during walking to simulate the risk of tripping of the elderly. PLoS ONE 2019, 14, e0217336. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Kearns, C.; Sato, Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J. Appl. Physiol. 2006, 100, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Sakamaki, M.; Fujita, S.; Ozaki, H.; Sugaya, M.; Sato, Y. Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J. Geriatr. Phys. Ther. 2010, 33, 34–40. [Google Scholar]
- Karst, G.M.; Hageman, P.A.; Jones, T.F.; Bunner, S.H. Reliability of foot trajectory measures within and between testing sessions. J. Gerontol. 1999, 54, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamacher, D.; Hamacher, D.; Schega, L. Towards the importance of minimum toe clearance in level ground walking in a healthy elderly population. Gait Posture 2014, 40, 727–729. [Google Scholar] [CrossRef]
- Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function, 2nd ed.; Slack Inc.: Thorofare, NJ, USA, 2010; pp. 53–119. [Google Scholar]
- Winter, D.A.; Patla, A.E.; Frank, J.S.; Walt, S.E. Biomechanical walking pattern changes in the fit and healthy elderly. Phys. Ther. 1990, 70, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, D.C.; Todd, M.K.; Della Croce, U.; Lipsitz, L.A.; Collins, J.J. Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments. Arch. Phys. Med. Rehabil. 1998, 79, 317–322. [Google Scholar] [CrossRef]
- Mills, P.; Barrett, R.; Morrison, S. Toe clearance variability during walking in young and elderly men. Gait Posture 2008, 28, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Oberg, T.; Karsznia, A.; Oberg, K. Joint angle parameters in gait: Reference data for natural subjects, 10–79 of age. J. Rehabil. Res. Dev. 1994, 31, 199–213. [Google Scholar]
- Prince, F.; Corriveau, H.; Hebert, R.; Winter, D.A. Gait in the elderly. Gait Posture 1997, 5, 128–135. [Google Scholar] [CrossRef]
Parameter | Walking Speed [km/h] | Normal Walking | C-Restriction | CT-Restriction |
---|---|---|---|---|
Cadence [steps/min] | 3.5 | 102.71 ± 12.34 | 101.37 ± 6.42 | 100.35 ± 8.89 |
4 | 107.97 ± 7.70 | 104.15 ± 7.38 | 105.46 ± 7.79 | |
Step Length [m] | 3.5 | 0.57 ± 0.03 | 0.57 ± 0.05 (5 *) | 0.57 ± 0.04 (4 *) |
4 | 0.60 ± 0.03 | 0.61 ± 0.03 (3 *) | 0.60 ± 0.05 (5 *) | |
Single Support Phase [% stride] | 3.5 | 64.20 ± 5.43 | 63.45 ± 3.14 (8 *) | 64.13 ± 3.42 (8 *) |
4 | 66.36 ± 4.25 | 63.93 ± 4.32 (8 *) | 64.55 ± 3.11 (9 *) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullauri, J.B.; Akiyama, Y.; Okamoto, S.; Yamada, Y. Biomechanical Analysis of Gait Compensation Strategies as a Result of Muscle Restriction. Appl. Sci. 2021, 11, 8344. https://doi.org/10.3390/app11188344
Ullauri JB, Akiyama Y, Okamoto S, Yamada Y. Biomechanical Analysis of Gait Compensation Strategies as a Result of Muscle Restriction. Applied Sciences. 2021; 11(18):8344. https://doi.org/10.3390/app11188344
Chicago/Turabian StyleUllauri, Jessica Beltran, Yasuhiro Akiyama, Shogo Okamoto, and Yoji Yamada. 2021. "Biomechanical Analysis of Gait Compensation Strategies as a Result of Muscle Restriction" Applied Sciences 11, no. 18: 8344. https://doi.org/10.3390/app11188344
APA StyleUllauri, J. B., Akiyama, Y., Okamoto, S., & Yamada, Y. (2021). Biomechanical Analysis of Gait Compensation Strategies as a Result of Muscle Restriction. Applied Sciences, 11(18), 8344. https://doi.org/10.3390/app11188344