Non-Contact Heart Rate Detection Based on Hand Vein Transillumination Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Vein Transmission Images
2.2. Acquisition and Pre-Processing of One-Dimensional Pulse Wave Signal
2.2.1. Acquisition of One-Dimensional Pulse Wave Signal
2.2.2. Elimination of Baseline Drift Based on Morphological Operation
2.3. FFT-Based Heart Rate Calculation
2.4. Performance Evaluation of Heart Rate Detection Algorithm
2.4.1. Qualitative Index
2.4.2. Quantitative Index
3. Results and Discussion
3.1. Qualitative Index
3.2. Quantitative Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lewandowska, M.; Nowak, J. Measuring Pulse Rate with a Webcam. J. Med. Imaging Health Inform. 2012, 2, 87–92. [Google Scholar] [CrossRef]
- Chen, S.; Chen, L.; Zhang, X.; Yang, Z. Screening of cardiac disease based on integrated modeling of heart rate variability. Biomed. Signal Process. Control 2021, 63, 102147. [Google Scholar] [CrossRef]
- Shu, L.; Yu, Y.; Chen, W.; Hua, H.; Li, Q.; Jin, J.; Xu, X. Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet. Sensors 2020, 20, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.C.; Hsiao, C.C.; Zheng, W.D.; Lee, R.G.; Lin, R. Artificial neural networks-based classification of emotions using wristband heart rate monitor data. Medicine 2019, 98, e16863. [Google Scholar] [CrossRef] [PubMed]
- Akhter, N.; Tharewal, S.; Kale, V.; Bhalerao, A.; Kale, K.V. Heart-Based Biometrics and Possible Use of Heart Rate Variability in Biometric Recognition Systems. In Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing; Chaki, R., Cortesi, A., Saeed, K., Chaki, N., Eds.; Springer: New Delhi, India, 2016; Volume 395. [Google Scholar] [CrossRef]
- Biswas, D.; Simões-Capela, N.; Van Hoof, C.; Van Helleputte, N. Heart Rate Estimation From Wrist-Worn Photoplethysmography: A Review. IEEE Sens. J. 2019, 19, 6560–6570. [Google Scholar] [CrossRef]
- Melnik, O.V. Methods of electrocardiosignal processing and analysis. Biomed. Eng. 2007, 41, 267–270. [Google Scholar] [CrossRef]
- Grothe, O.; Kaplan, A.; Kouz, K.; Saugel, B. Computer Program for Error Grid Analysis in Arterial Blood Pressure Method Comparison Studies. Anesth. Analg. 2019, 130, E71–E74. [Google Scholar] [CrossRef] [PubMed]
- Hertzman, A.B. The blood supply of various skin areas as estimated by the photoelectric plethysmograph. Am. J. Physiol. 1938, 124, 328–340. [Google Scholar] [CrossRef]
- Wu, T.; Blazek, V.; Schmitt, H.J. Photoplethysmography imaging: A new noninvasive and noncontact method for mapping of the dermal perfusion changes. In Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics; International Society for Optics and Photonics: Bellingham, WA, USA, 2000. [Google Scholar] [CrossRef]
- Algarni, A.D.; El Banby, G.; Ismail, S.; El-Shafai, W.; El-Samie, F.E.; Soliman, N.F. Discrete Transforms and Matrix Rotation Based Cancelable Face and Fingerprint Recognition for Biometric Security Applications. Entropy 2020, 22, 1361. [Google Scholar] [CrossRef] [PubMed]
- Umer, S.; Sardar, A.; Dhara, B.C.; Rout, R.K.; Pandey, H.M. Person identification using fusion of iris and periocular deep features. Neural Netw. 2020, 122, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Babalola, F.O.; Bitirim, Y.; Toygar, N. Palm vein recognition through fusion of texture-based and CNN-based methods. Signal Image Video Process. 2020, 15, 459–466. [Google Scholar] [CrossRef]
- Titrek, F.; Baykan, M. Finger Vein Recognition by Combining Anisotropic Diffusion and a New Feature Extraction Method. Traitement Signal 2020, 37, 433–441. [Google Scholar] [CrossRef]
- Veluchamy, S.; Karlmarx, L.R. System for multimodal biometric recognition based on finger knuckle and finger vein using feature-level fusion and k-support vector machine classifier. IET Biom. 2017, 6, 232–242. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Memik, G. User identification based on finger-vein patterns for consumer electronics devices. IEEE Trans. Consum. Electron. 2010, 56, 799–804. [Google Scholar] [CrossRef]
- Tirunagari, S.; Poh, N.; Windridge, D.; Iorliam, A.; Suki, N.; Ho, A.T.S. Detection of face spoofing using visual dynamics. IEEE Trans. Inf. Forensics Secur. 2015, 10, 762–777. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Albacete, V.; Tome-Gonzalez, P.; Alonso-Fernandez, F.; Galbally, J.; Fierrez, J.; Ortega-Garcia, J. Direct attacks using fake images in iris verification. In European Workshop on Biometrics and Identity Management; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5372, pp. 181–190. [Google Scholar]
- Tome, P.; Raghavendra, R.; Busch, C.; Tirunagari, S.; Poh, N.; Shekar, B.H.; Gragnaniello, D.; Sansone, C.; Verdoliva, L.; Marcel, S. The 1st competition on counter measures to finger vein spoofing attacks. In Proceedings of the 2015 International Conference on Biometrics (ICB), Phuket, Thailand, 19–22 May 2015; pp. 513–518. [Google Scholar]
- Marcialis, G.L.; Lewicke, A.; Tan, B.; Coli, P.; Grimberg, D.; Congiu, A.; Tidu, A.; Roli, F.; Schuckers, S. First international fingerprint liveness detection competition–LivDet 2009. In International Conference on Image Analysis and Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 12–23. [Google Scholar]
- Sousedik, C.; Busch, C. Presentation attack detection methods for fingerprint recognition systems: A survey. IET Biom. 2014, 3, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.L.; Zhao, W.S.; Li, H.K.; Wang, F.B. Research on removing baseline wandering of pulse wave signal based on morphological filter. J. Hefei Univ. Technol. 2011, 34, 525–528. [Google Scholar] [CrossRef]
- Duhamel, P.; Vetterli, M. Fast fourier transforms: A tutorial review and a state of the art. Signal Process. 1990, 19, 259–299. [Google Scholar] [CrossRef] [Green Version]
- Giavarina, D. Understanding bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, L.I.; Mark, R.G.; Clifford, G.D.; Meng-sun, Y.U. Heart Rate Estimation Algorithm Based on Signal Quality Estimation and Kalman Filter. Chin. J. Med. Phys. 2007, 6, 454–457. [Google Scholar]
Index | M | SD | RMSE | r |
---|---|---|---|---|
value | 2.2814 | 1.1373 | 2.8254 | 0.7522 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Cheng, D.; Wang, J.; Qin, H.; Liu, Y. Non-Contact Heart Rate Detection Based on Hand Vein Transillumination Imaging. Appl. Sci. 2021, 11, 8470. https://doi.org/10.3390/app11188470
Yang S, Cheng D, Wang J, Qin H, Liu Y. Non-Contact Heart Rate Detection Based on Hand Vein Transillumination Imaging. Applied Sciences. 2021; 11(18):8470. https://doi.org/10.3390/app11188470
Chicago/Turabian StyleYang, Shuqiang, Deqiang Cheng, Jun Wang, Huafeng Qin, and Yike Liu. 2021. "Non-Contact Heart Rate Detection Based on Hand Vein Transillumination Imaging" Applied Sciences 11, no. 18: 8470. https://doi.org/10.3390/app11188470
APA StyleYang, S., Cheng, D., Wang, J., Qin, H., & Liu, Y. (2021). Non-Contact Heart Rate Detection Based on Hand Vein Transillumination Imaging. Applied Sciences, 11(18), 8470. https://doi.org/10.3390/app11188470