Survey on Data Hiding Based on Block Truncation Coding
Abstract
:1. Introduction
2. Absolute Moment Block Truncation Coding
3. Survey of Related Works
3.1. Non-Reversible Data Hiding
3.1.1. Direct Bitmap Substitution (DBS)
3.1.2. Exploit Modification Direction
3.1.3. Difference Expansion (DE)
3.1.4. Error Correction Coding (ECC)
3.1.5. Least Significant Bits (LSB) Substitution
3.2. Reversible Data Hiding
3.2.1. Histogram Modification
- 1.
- Generate its histogram .
- 2.
- Grayscale value is obtained from converting three pixels in the bitmap image to a decimal number.
- 3.
- In the histogram , find the maximum point and the minimum point .
- 4.
- If the minimum point , save the position of those pixels and the pixel gray value b as bookkeeping information.
- 5.
- Move the whole part of the histogram with to the right by 1 unit (Figure 5b).
- 6.
- Scan the image, and once meeting the pixel a, check the to-be-embedded bit. If the to-be-embedded bit is ‘1’, the pixel grayscale value is changed . If the bit is ‘0’, the pixel value remains a (Figure 5c).
3.2.2. Error Correction Coding
4. Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DH | Data Hiding |
RDH | Reversible Data Hiding |
BTC | Block Truncation Coding |
AMBTC | Absolute Moment BTC |
DCT | Discrete Cosine Transform |
LSB | Least Significant Bit |
OPAP | Optimal Pixel Adjustment Process |
HS | Histogram Shifting |
ECC | Error Correction Code |
DBS | Direct Bitmap Substitution |
ith pixel of the block | |
Mean pixel value of a block | |
A block of common bitmap | |
Two quantization levels of a block | |
T | |
Modular operator | |
f | Extraction function as weighted sum modulo 5 |
⊕ | Exclusive or operator |
H | Parity-check matrix for HC(7,4) |
Histogram of an image, where x is a pixel | |
M | n-bit secret message |
References
- Bender, W.; Gruhl, D.; Morimoto, N.; Lu, A. Techniques for data hiding. IBM Syst. J. 1996, 35, 313–336. [Google Scholar] [CrossRef]
- Petitcolas, F.A.P.; Anderson, R.J.; Kuhn, M.G. Information hiding-a survey. Proc. IEEE 1999, 87, 1062–1078. [Google Scholar] [CrossRef] [Green Version]
- Provos, N.; Honeyman, P. Hide and seek: An introduction to steganography. IEEE Secur. Priv. 2003, 1, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Alattar, A.M. Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans. Image Process. 2004, 13, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.U.; Sharma, G.; Tekalp, A.M.; Saber, E. Lossless generalized-LSB data embedding. IEEE Trans. Image Process. 2005, 14, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Shi, Y.Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362. [Google Scholar]
- Hsu, C.T.; Wu, J.L. Hidden digital watermarks in images. IEEE Trans. Image Process. 1999, 8, 58–68. [Google Scholar] [PubMed] [Green Version]
- Dang, P.P.; Chau, P.M. Image encryption for secure Internet multimedia applications. IEEE Trans. Consum. Electron. 2000, 46, 395–403. [Google Scholar] [CrossRef]
- Johnson, N.F.; Jajodia, S. Exploring steganography: Seeing the unseen. Computer 1998, 31, 26–34. [Google Scholar] [CrossRef]
- Anderson, R.J.; Petitcolas, F.A.P. On the limits of steganography. IEEE J. Sel. Areas Commun. 1998, 16, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Fridrich, J.; Goljan, M.; Du, R. Detecting LSB steganography in color, and gray-scale images. IEEE Multimed. 2001, 8, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Bruno, C.; Arcangelo, C.; Alfredo, D.S.; Francesco, P.; Pizzolante, R. Compression-based steganography. Concurr. Comput. Pract. Exp. 2020, 32, e5322. [Google Scholar]
- Cox, I.J.; Kilian, J.; Leighton, F.T.; Shamoon, T. Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 1997, 6, 1673–1687. [Google Scholar] [CrossRef]
- Hartung, F.; Kutter, M. Multimedia watermarking techniques. Proc. IEEE 1999, 87, 1079–1107. [Google Scholar] [CrossRef] [Green Version]
- Ker, A.D. Steganalysis of LSB matching in grayscale images. IEEE Signal Process. Lett. 2005, 12, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Mielikainen, J. LSB matching revisited. IEEE Signal Process. Lett. 2006, 13, 285–287. [Google Scholar] [CrossRef]
- Hassan, F.S.; Gutub, A. Improving data hiding within colour images using hue component of HSV colour space. CAAI Trans. Intell. Technol. 2021. [Google Scholar] [CrossRef]
- Lin, S.D.; Chen, C.F. A robust DCT-based watermarking for copyright protection. IEEE Trans. Consum. Electron. 2000, 46, 415–421. [Google Scholar] [CrossRef]
- Solachidis, V.; Pitas, L. Circularly symmetric watermark embedding in 2-D DFT domain. IEEE Trans. Image Process. 2001, 10, 1741–1753. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.S.; Gutub, A. Novel embedding secrecy within images utilizing an improved interpolation-based reversible data hiding scheme. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Delp, E.; Mitchell, O. Image compression using block truncation coding. IEEE Trans. Commun. 1979, 27, 1335–1342. [Google Scholar] [CrossRef]
- Langelaar, G.C.; Lagendijk, R.L. Optimal differential energy watermarking of DCT encoded images and video. IEEE Trans. Image Process. 2001, 10, 148–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lema, M.; Mitchell, O. Absolute moment block truncation coding and its application to color images. IEEE Trans. Commun. 1984, 32, 1148–1157. [Google Scholar] [CrossRef]
- Wang, Y.L.; Hwang, M.S. An improved reversible data hiding for block truncation coding compressed images. IETE Tech. Rev. 2020, 37, 615–621. [Google Scholar] [CrossRef]
- Chuang, J.C.; Chang, C.C. Using a simple and fast image compression algorithm to hide secret information. Int. J. Comput. Appl. 2006, 28, 329–333. [Google Scholar]
- Zhang, X.; Wang, S. Efficient steganographic embedding by exploiting modification direction. IEEE Commun. Lett. 2006, 10, 781–783. [Google Scholar] [CrossRef]
- Tian, J. Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950, 29, 147–160. [Google Scholar] [CrossRef]
- Ou, D.; Sun, W. High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimed. Tools Appl. 2015, 74, 9117–9139. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chi, K.Y. Cloud image watermarking: High quality data hiding, and blind decoding scheme based on block truncation coding. Multimed. Syst. 2019, 25, 551–563. [Google Scholar] [CrossRef]
- Malik, A.; Sikka, G.; Verma, H.K. An AMBTC compression-based data hiding scheme using pixel value adjusting strategy. Multidimens. Syst. Signal Process. 2018, 29, 1801–1818. [Google Scholar] [CrossRef]
- Hong, W. Efficient data hiding based on block truncation coding using pixel pair matching technique. Symmetry 2018, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.; Chen, T.S. A novel data embedding method using adaptive pixel pair matching. IEEE Trans. Inf. Forensics Secur. 2012, 7, 176–184. [Google Scholar] [CrossRef]
- Hong, W.; Li, Y.; Weng, S. A difference matching technique for data embedment based on absolute moment block truncation coding. Multimed. Tools Appl. 2019, 78, 13987–14006. [Google Scholar] [CrossRef]
- Su, G.D.; Chang, C.C.; Lin, C.C. High-precision authentication scheme based on matrix encoding for AMBTC—Compressed images. Symmetry 2019, 11, 996. [Google Scholar] [CrossRef] [Green Version]
- Kim, C. Data hiding based on BTC using EMD. J. Inst. Internet, Broadcast. Commun. (IIBC) 2014, 14, 11–16. [Google Scholar] [CrossRef]
- Lee, C.F.; Chang, C.C.; Li, G.L. A data hiding scheme based on turtle-shell for AMBTC compressed images. KSII Trans. Internet Inf. Syst. 2020, 14, 2554–2575. [Google Scholar]
- Huang, Y.H.; Chang, C.C.; Chen, Y.H. Hybrid secret hiding schemes based on absolute moment block truncation coding. Multimed. Tools Appl. 2017, 76, 6159–6174. [Google Scholar] [CrossRef]
- Kim, C.; Shin, D.; Yang, C.N. High capacity data hiding with absolute moment block truncation codingimage based on interpolation. Math. Biosci. Eng. 2020, 17, 160–178. [Google Scholar] [CrossRef]
- Bai, J.; Chang, C.C. A high payload steganographic scheme for compressed images with Hamming code. Int. J. Netw. Secur. 2016, 18, 1122–1129. [Google Scholar]
- Kim, C.; Shin, D.K.; Yang, C.N.; Leng, L. Hybrid data hiding based on AMBTC using enhanced Hamming code. Appl. Sci. 2020, 10, 5336. [Google Scholar] [CrossRef]
- Kumar, R.; Kim, D.S.; Jung, K.H. Enhanced AMBTC based data hiding method using hamming distance and pixel value differencing. J. Inf. Secur. Appl. 2019, 47, 94–103. [Google Scholar] [CrossRef]
- Horng, J.; Chang, C.; Li, G. Steganography using quotient value differencing and LSB substitution for AMBTC compressed Images. IEEE Access 2020, 8, 129347–129358. [Google Scholar] [CrossRef]
- Kim, C.; Yang, C.N.; Leng, L. High-capacity data hiding for ABTC-EQ based compressed image. Electronics 2020, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Z.; Lin, C.F.; Lin, J.C. Hiding data in images by optimal moderately significant-bit replacement. IEE Electron. Lett. 2000, 36, 2069–2070. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Liu, X. A reversible data hiding scheme for block truncation compressions based on Histogram modification. In Proceedings of the 2012 Sixth International Conference on Genetic and Evolutionary Computing, Kitakyushu, Japan, 25–28 August 2012; pp. 157–160. [Google Scholar] [CrossRef]
- Shie, S.; Jiang, J.; Su, Y.; Chang, W. An improved steganographic scheme implemented on the compression domain of image using BTC and Histogram modification. In Proceedings of the 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), Krakow, Poland, 16–18 May 2018; pp. 640–644. [Google Scholar] [CrossRef]
- Kim, C.; Shin, D.; Leng, L.; Yang, C.N. Lossless data hiding for absolute moment block truncation coding using histogram modification. J. Real-Time Image Process. 2018, 14, 101–114. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Tang, L.L. High-capacity reversible data hiding in AMBTC-compressed images. Int. J. Digit Content Technol. Appl. 2012, 6, 205–211. [Google Scholar]
- Chang, C.I.; Hu, C.Y.; Chen, L.W.; Lu, C.C. High capacity reversible data hiding scheme based on residual histogram shifting for block truncation coding. Signal Process. 2015, 108, 376–600. [Google Scholar] [CrossRef]
- Li, C.H.; Lu, Z.M.; Su, Y.X. Reversible data hiding for BTC-compressed images based on bitplane flipping and histogram shifting of mean tables. Inf. Technol. J. 2011, 10, 1421–1426. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-C.; Lin, J.; Chang, C.-C. Reversible data hiding for AMBTC compressed images based on matrix and Hamming coding. Electronics 2021, 10, 281. [Google Scholar] [CrossRef]
- Lin, J.; Weng, S.; Zhang, T.; Ou, B.; Chang, C. Two-layer reversible data hiding based on AMBTC image with (7, 4) Hamming code. IEEE Access 2020, 8, 21534–21548. [Google Scholar] [CrossRef]
- Standard Images. 2021. Available online: http://sipi.usc.edu/database/ (accessed on 26 September 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Yang, C.-N.; Baek, J.; Leng, L. Survey on Data Hiding Based on Block Truncation Coding. Appl. Sci. 2021, 11, 9209. https://doi.org/10.3390/app11199209
Kim C, Yang C-N, Baek J, Leng L. Survey on Data Hiding Based on Block Truncation Coding. Applied Sciences. 2021; 11(19):9209. https://doi.org/10.3390/app11199209
Chicago/Turabian StyleKim, Cheonshik, Ching-Nung Yang, Jinsuk Baek, and Lu Leng. 2021. "Survey on Data Hiding Based on Block Truncation Coding" Applied Sciences 11, no. 19: 9209. https://doi.org/10.3390/app11199209
APA StyleKim, C., Yang, C. -N., Baek, J., & Leng, L. (2021). Survey on Data Hiding Based on Block Truncation Coding. Applied Sciences, 11(19), 9209. https://doi.org/10.3390/app11199209