Fall Recognition System to Determine the Point of No Return in Real-Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sub-Division of the Critical Phase
2.2. COM-Based Labeling
3. Data Acquisition
3.1. Composition of the Falls Data Acquisition System
3.2. Falls Data Acquisition on the Mattress
3.3. Falls Data Acquisition on the Treadmill
4. Learning and Recognition Results
5. Real-Time Implementation and Verification
6. Conclusions and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection. Biomed. Eng. Online 2013, 12, 66. [Google Scholar]
- Delahoz, Y.S.; Labrador, M.A. Survey on Fall Detection and Fall Prevention Using Wearable and External Sensors. Sensors 2014, 14, 19806–19842. [Google Scholar] [CrossRef] [Green Version]
- Noury, N.; Bourke, A.K.; ÓLaighin, G.; Lundy, J.E. A proposal for the classification and evaluation of fall detectors. IRBM 2008, 29, 340–349. [Google Scholar] [CrossRef]
- Casilari, E.; Santoyo-Ramón, J.-A.; Cano-García, J.-M. Analysis of Public Datasets for Wearable Fall Detection Systems. Sensors 2017, 17, 1513. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Qu, X. Pre-impact fall detection. Biomed. Eng. Online 2016, 15, 61. [Google Scholar] [CrossRef] [Green Version]
- Chung, K. Policy Report on a Survey on Welfare and Living Conditions of the Elderly, Paragraph 3 (Safety Conditions) Of Chapter 13 (Living Environments and Safety Conditions for the, Elderly); The Ministry of Health and Welfare (MOHW): Sejong, Korea; Institute for Health and Social Affairs: Sejong, Korea, 2017.
- Bourke, A.K.; O’Brien, J.V.; Lyons, G.M. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 2007, 26, 194–199. [Google Scholar] [CrossRef]
- Tolkiehn, M.; Atallah, L.; Lo, B.; Yang, G.Z. Direction Sensitive Fall Detection Using a Triaxial Accelerometer and a Barometric Pressure Sensor. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 369–372. [Google Scholar] [CrossRef]
- Zhao, G.; Mei, Z.; Liang, D.; Ivanov, K.; Guo, Y.; Wang, Y.; Wang, L. Exploration and implementation of a pre-impact fall recognition method based on an inertial body sensor network. Sensors 2012, 12, 15338–15355. [Google Scholar] [CrossRef]
- Choi, W.J.; Wakeling, J.M.; Robinovitch, S.N. Kinematic analysis of video-captured falls experienced by older adults in long-term care. J. Biomech. 2015, 48, 911–920. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Xue, B.; Zhou, M.; Ji, B.; Li, Y. Depth-Based Human Fall Detection via Shape Features and Improved Extreme Learning Machine. J. Biomed. Health Inform. 2014, 18, 1915–1922. [Google Scholar] [CrossRef]
- Fan, Y.; Levine, M.D.; Wen, G.; Qju, S. A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing 2017, 260, 43–58. [Google Scholar] [CrossRef]
- Özdemir, A.T.; Barshan, B. Detecting Falls with Wearable Sensors Using Machine Learning Techniques. Sensors 2014, 14, 10691–10708. [Google Scholar] [CrossRef]
- Xu, J.; He, Z.; Zhang, Y. CNN-LSTM Combined Network for IoT Enabled Fall Detection Applications. J. Phys. Conf. Ser. 2019, 1267, 012044. [Google Scholar] [CrossRef] [Green Version]
- Serpen, G.; Khan, R.H. Real-time Detection of Human Falls in Progress: Machine Learning Approach ScienceDirect. Proc. Comput. Sci. 2018, 140, 238–247. [Google Scholar] [CrossRef]
- Luna-Perejón, F.; Domínguez-Morales, M.J.; Civit-Balcells, A. Wearable Fall Detector Using Recurrent Neural Networks. Sensors 2019, 19, 4885. [Google Scholar] [CrossRef] [Green Version]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A Fall and Movement Dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Otanasap, N.; Boonbrahm, P. Pre-impact fall detection approach using dynamic threshold based and center of gravity in multiple Kinect viewpoints. In Proceedings of the 14th International Joint Conference on Computer Science and Software Engineering (JCSSE), NakhonSiThammarat, Thailand, 12–14 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Tao, X.; Yun, Z. Fall prediction based on biomechanics equilibrium using Kinect. Int. J. Distrib. Sens. Netw. 2017. [CrossRef]
- Moya Rueda, F.; Grzeszick, R.; Fink, G.A.; Feldhorst, S.; Ten Hompel, M. Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors. Informatics 2018, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Gholamrezaii, M.; Taghi Almodarresi, S.M. Human Activity Recognition Using 2D Convolutional Neural Networks. In Proceedings of the 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019; pp. 1682–1686. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, C.Y. Label-preserving data augmentation for mobile sensor data. Multidimens. Syst. Signal Process. 2021, 32, 115–129. [Google Scholar] [CrossRef]
Fall Phases | Sub-Division of the Critical Phase | Classification of Behaviors |
---|---|---|
Pre-fall phase | Standing (S) | Daily activities |
Walking (W) | ||
Critical phase | Imbalance (I) | Fall in progress |
Falling down (F) | ||
Post fall phase | Post Fall (P) | After falling down |
Recovery phase | Recovery (R) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.S.; Son, Y.K.; Jung, J.; Lee, D.-W.; Shin, H.C. Fall Recognition System to Determine the Point of No Return in Real-Time. Appl. Sci. 2021, 11, 8626. https://doi.org/10.3390/app11188626
Kim BS, Son YK, Jung J, Lee D-W, Shin HC. Fall Recognition System to Determine the Point of No Return in Real-Time. Applied Sciences. 2021; 11(18):8626. https://doi.org/10.3390/app11188626
Chicago/Turabian StyleKim, Bae Sun, Yong Ki Son, Joonyoung Jung, Dong-Woo Lee, and Hyung Cheol Shin. 2021. "Fall Recognition System to Determine the Point of No Return in Real-Time" Applied Sciences 11, no. 18: 8626. https://doi.org/10.3390/app11188626
APA StyleKim, B. S., Son, Y. K., Jung, J., Lee, D. -W., & Shin, H. C. (2021). Fall Recognition System to Determine the Point of No Return in Real-Time. Applied Sciences, 11(18), 8626. https://doi.org/10.3390/app11188626