Optimization of Electricity Generation Technologies to Reduce Carbon Dioxide Emissions in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. MESSAGE Modeling
- Variable operating and maintenance costs;
- Fixed operating and maintenance costs;
- Investment costs: penalty costs/taxes imposed by regulation.
2.2. SIMPACTS Modeling
3. Results and Discussion
3.1. Energy Optimization
3.2. Sensitivity Analysis
3.3. Environmental Effect during Normal Operation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IRENA. Renewable Energy Outlook Egypt; IRENA: Abu Dhabi, United Arab Emirates, 2018; pp. 1–120. [Google Scholar]
- EEHC. Annual Report 2018/2019; Egyptian Electricity Holding Company: Cairo, Egypt, 2019; pp. 1–89. [Google Scholar]
- U.S. Energy Information Administration. Country Analysis Brief: Egypt. 2018. Available online: https://www.eia.gov/international/analysis/country/EGY (accessed on 4 June 2021).
- World Nuclear Association. Nuclear Power in Egypt. 2021. Available online: https://world-nuclear.org/information-library/country-profiles/countries-a-f/egypt.aspx (accessed on 4 June 2021).
- IAEA. Management of Spent Fuel from Nuclear Power Reactors; Proceedings Series; International Atomic Energy Agency: Vienna, Austria, 2020; p. 331. [Google Scholar]
- Cauich-López, D.A.; Payan, L.F.B.; Abdelhalim, A.M.N.; Izrantsev, V.V.; Knorring, V.G.; Kondrashkova, G.A.; Pankratov, Y.M.; Mukhametova, L.R.; Sinitsyn, A.A. Egypt and Nuclear Energy: Aspects, Reasons and Future. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Kim, H.S. Comparison of cost efficiencies of nuclear power and renewable energy generation in mitigating CO 2 emissions. Environ. Sci. Pollut. Res. 2021, 28, 789–795. [Google Scholar] [CrossRef] [PubMed]
- IAEA. The Integrated Nuclear Infrastructure Review (INIR)—Phase 2; IAEA: Vienna, Austria, 2019; pp. 1–107. [Google Scholar]
- Egypt Ministry of Planning. Sustainable Development Strategy: Egypt Vision 2030; Egypt Ministry of Planning: Cairo, Egypt, 2016; pp. 1–37.
- Hainoun, A.; Aldin, M.S.; Almoustafa, S. Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model. Energy Policy 2010, 38, 1701–1714. [Google Scholar] [CrossRef]
- Esmail, S.M.M.; Cheong, J.H. Studies on Optimal Strategy to Adopt Nuclear Power Plants into Saudi Arabian Energy System Using MESSAGE Tool. Sci. Technol. Nucl. Install. 2021, 2021, 1–26. [Google Scholar] [CrossRef]
- Kim, H.W.; Roh, M.S. Long Term Energy Plan for Korea using MESSAGE for Energy Optimization. IJERT 2017, 1–7. [Google Scholar]
- Tawfik, F.; Nassar, N.; Abdel Aziz, M. Environmental Impact of Conventional Power Plant in Normal and Accidental Conditions. Arab J. Nucl. Sci. Appl. 2018, 51, 68–81. [Google Scholar]
- IAEA. Modelling Nuclear Energy Systems with MESSAGE: A User’s Guide; IAEA: Vienna, Austria, 2016. [Google Scholar]
- Central Bank of Egypt. Discount Rates. 2020. Available online: https://www.cbe.org.eg/en/EconomicResearch/Statistics/Pages/DiscountRates.aspx (accessed on 13 July 2021).
- U.S. Energy Information Administration. Egyptian Electricity Consumption. 2018. Available online: https://translate.google.com.ph/?sl=auto&tl=ar&text=consumption&op=translate (accessed on 13 July 2021).
- Mondal, M.A.H.; Ringler, C.; Al-Riffai, P.; Eldidi, H. Long-term optimization of Egypt’s power sector: Policy implications. Energy 2019, 166, 1063–1073. [Google Scholar] [CrossRef]
- S & P Global Market Intelligence. Average Age of US Power Plant Fleet Flat for 4th-Straight Year in 2018. 2019. Available online: https://www.spglobal.com/marketintelligence/en/news-insights/trending/gfjqeFt8GTPYNK4WX57z9g2 (accessed on 13 July 2021).
- Hainoun, A.; Almoustafa, A.; Aldin, M.S. Estimating the health damage costs of Syrian electricity generation system using impact pathway approach. Energy 2010, 35, 628–638. [Google Scholar] [CrossRef]
- Siemens. Boosting Egypt’s Energy System in Record Time; Siemenes: Cairo, Egypt, 2018; pp. 1–12. [Google Scholar]
- Zingstra, H. Lake Burullus: Local Food Security and Biodiversity Under Pressure, Final Report; Centre for Development Innovation: Wageningen, The Netherlands, 2013. [Google Scholar]
- World Bank. Environmental and Social Due Diligence for New Capital Power Plant; World Bank: Washington, DC, USA, 2016; pp. 1–78. [Google Scholar]
- Al-Rafea, K.; Elkamel, A.; Abdul-Wahab, S.A. Cost-analysis of health impacts associated with emissions from combined cycle power plant. J. Clean. Prod. 2016, 139, 1408–1424. [Google Scholar] [CrossRef]
- City Population. EGYPT: Administrative Division. 2021. Available online: https://www.citypopulation.de/en/egypt/admin/ (accessed on 4 June 2021).
- Satoh, M.; Aboulroos, S. Irrigated Agriculture in Egypt: Past, Present and Future; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Abdel-Haleem, F.S.; Esam, H.Y.; El-Belasy, A.; Ibrahim, S.A.; Sobeih, M.F. Assessing the risk of the Aswan High Dam Breaching. ERJ 2011, 34, 167–179. [Google Scholar] [CrossRef]
- Chow, M.F.; bin Bakhrojin, M.A.; Haris, H.; Dinesh, A. Assessment of Greenhouse Gas. (GHG) Emission from Hydropower Reservoirs in Malaysia. Proceedings 2018, 2, 1380. [Google Scholar] [CrossRef] [Green Version]
- IAEA. Status Report 107—VVER-1200 (V-392M) (VVER-1200 (V-392M)); IAEA: Vienna, Austria, 2011; pp. 1–32. [Google Scholar]
- Fennovoima. Environmental Impact Assessment Report for a Nuclear Power Plant; Fennovoima: Helsinki, Finland, 2014; pp. 1–288. [Google Scholar]
- IAEA. Database on Discharges of Radionuclides to the Atmosphere and the Aquatic Environment. 2012. Available online: https://dirata.iaea.org/SearchDischarges.aspx (accessed on 4 June 2021).
Parameters | Input Values |
---|---|
Base Year | 2015 |
Modelling Period | 2015 to 2060 |
Time Step | One year |
Discount Rate Used | 8.75% [15] |
Resources Used | Oil, Gas, Nuclear, Hydro, Solar and Wind |
Technology Name | Efficiency | Plant Capacity Factor | Investment Cost (USD/kW) [17] | Fixed Cost (US$/kW/yr) [17] | Retired Time (Year) [18] | Historical Capacity (MW) |
---|---|---|---|---|---|---|
Electricity distribution (Elec-TD) | 0.874 | N/A | N/A | N/A | 50 | Using historical data from 1991 to 2015 |
Oil steam turbine power plant (Oil-PP-ST) | 0.4 [17] | 0.47 | 825 | 18 | 49 | Using historical data from 1991 to 2015 |
Gas steam turbine power plant (Gas-PP-ST) | 0.42 [17] | 0.47 | 676 | 30 | 47 | Using historical data from 1990 to 2015 |
Gas Combine cycle power plant (Gas-PP-CC) | 0.56 [17] | 0.47 | 917 | 18.3 | 26 | Using historical data from 1990 to 2015 |
Solar power plant (Solar-PP) | - | 0.36 | 4800 | 60 | 25 | Using historical data from 2000 to 2015 |
Hydro power plant (Hydro) | - | 0.47 | 2640 | 60 | 70 | Using historical data from 1991 to 2015 |
Wind power plant | - | 0.33 | 2000 | 60 | 20 | Using historical data from 2000 to 2015 |
Nuclear power plant (Nuc-PP) | - | 0.9 | 4800 | 121 | 60 | N/A |
Domain Data | ||
---|---|---|
Domain Name | Burullus Power Plant | |
Time Frame | Full year | |
Cell Size | 50 x50 km | |
Latitude | 31.53258 | |
Longitude | −30.8107 | |
Emission and Dispersion | ||
Base Elevation | 8.5 m | |
Stack Height [22] | 60 m | |
Stack Diameter [23] | 5.5 m | |
Exit Temperature | 360 K | |
Exit Velocity [23] | 21 m/s | |
SO2 Emissions [23] | 128 kg/h | |
NOx Emissions [23] | 1520 kg/h | |
PM10 Emissions | PM10 emission is very small when NG use as fuel for FPP | |
Month | Ozone (O3) Concentration | Ammonia (NH3) Concentration |
All year | 80 ppb | 10 ppb |
Health Impacts | ||
Burullus | Ar-Riyād | |
Population = 251,190 [24] | Population = 197,351 [24] | |
Area = 481.0 km2 | Area = 437.6 km2 | |
Population Density = 522.2/km2 | Population Density = 451.0/km2 |
Site Location and Cost Data | |||
---|---|---|---|
Economic defaults from | Egypt | ||
GDP per Capita | 3019.21 USD per capita | ||
Hydro Power Plant Data | |||
Plant Capacity | 2100 MW | ||
Capacity Factor | 50% | ||
Lifetime | 50 years | ||
Dam Data [26] | |||
Reservoir inundated area | 6000.32 km2 | ||
Average dam failure rate | 0.0001 fraction | ||
Average accident warning time | 1.5 h | ||
Population Data | |||
Population displaced | 128,410 persons | ||
Share of population resettled/compensated | 20% | ||
Population at risk in the event of accident | 692,296 persons | ||
Value of statistical life | USD 591,049.4 | ||
Land Use Data (Type) | |||
Region type | Tropical | ||
Type of Terrain | Canyons | ||
Land Use Data (Shares) | |||
Forest | 0% | ||
Farmland | 1.5% | ||
Other | 98.5% | ||
Land Use Data (Cost) | |||
Forest | 0 USD per hectare | ||
Farmland | 366 USD per hectare | ||
Other | 154,262.5 USD per hectare | ||
Fraction of land costs internalized | 0.5 fraction | ||
Emission Factors (during Operation) [27] | |||
Low | Mean | High | |
CO2 (tons/km2/year) | 150 | 1450 | 4000 |
CH4 (tons/km2/year) | 1.5 | 18 | 40 |
Global warming potential for CH4 | 21 |
Domain Data | ||
---|---|---|
Domain Name | El Dabaa NPP | |
Time Frame | Full year | |
Cell Size | 50 × 50 km | |
Latitude | 31.04375124 | |
Longitude | −28.49788242 | |
Emission and Dispersion [28] | ||
Base Elevation | 20 m | |
Stack Height [29] | 100 m | |
Stack Diameter | 3 m | |
Exit Temperature | 450 K | |
Exit Velocity | 15 m/s | |
Emission Cycle | constant | |
Emission Rate Unit | GBq/year | |
3H emissions [30] | 185 GBq/year | |
14C emissions [30] | 4329000 GBq/year | |
131I emissions [30] | 0.8 GBq/year | |
133Xe emissions [30] | 18666.7 GBq/year | |
Pop. Density [24] | ||
Population = 56,851 Area = 2012 km2 Population Density = 28.26/km2 | ||
Impact | Specific Risk Factors (Cases per Man Sv) | Specific Economic Values (USD) |
Fatal Cancer | 0.05 | 1001.29 |
Non-fatal Cancer | 0.12 | 1090.01 |
Specific hereditary Effect | 0.01 | 32772.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Hameed, A.; Kim, J.; Hyun, J.-H.; Ramadhan, H.H.; Joseph, S.R.; Nandutu, M. Optimization of Electricity Generation Technologies to Reduce Carbon Dioxide Emissions in Egypt. Appl. Sci. 2021, 11, 8788. https://doi.org/10.3390/app11188788
Abdel-Hameed A, Kim J, Hyun J-H, Ramadhan HH, Joseph SR, Nandutu M. Optimization of Electricity Generation Technologies to Reduce Carbon Dioxide Emissions in Egypt. Applied Sciences. 2021; 11(18):8788. https://doi.org/10.3390/app11188788
Chicago/Turabian StyleAbdel-Hameed, Ahmed, Juyoul Kim, Joung-Hyuk Hyun, Hilali Hussein Ramadhan, Soja Reuben Joseph, and Mercy Nandutu. 2021. "Optimization of Electricity Generation Technologies to Reduce Carbon Dioxide Emissions in Egypt" Applied Sciences 11, no. 18: 8788. https://doi.org/10.3390/app11188788
APA StyleAbdel-Hameed, A., Kim, J., Hyun, J. -H., Ramadhan, H. H., Joseph, S. R., & Nandutu, M. (2021). Optimization of Electricity Generation Technologies to Reduce Carbon Dioxide Emissions in Egypt. Applied Sciences, 11(18), 8788. https://doi.org/10.3390/app11188788