UWB and MEMS IMU Integrated Positioning Algorithm for a Work-Tool Tracking System
Abstract
:1. Introduction
2. Proposed Position Tracking System Based on Composite Sensors
2.1. Positioning Tag and Anchor Based on UWB and MEMS IMU Sensor
2.2. MEMS IMU Positioning Algorithm
2.3. UWB Positioning Algorithm
2.4. EKT-Based MEMS IMU and UWB Integrated Positioning Algorithm
3. Experimental Results by Unit Testing
3.1. Basic Telemmounication Test
3.2. LOS Test and Non-LOS Test
3.3. Anechoic Chamber Test
4. Experimental Result of the Position Tracking System and Discussion
4.1. Position Tracking Experiment in Anechoic Chamber
4.2. Position Tracking Experiment in Anechoic Chamber
4.3. DAA(Detection and Avoid) Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ok, C.H.; Kim, D.S.; Gong, J.S.; Seo, Y.H. Study on integrated storage systems for automobile production. J. Korea Soc. Simul. 2012, 21, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, A. Industry 4.0: The Industrial Internet of Things; Apress: New York, NY, USA, 2016. [Google Scholar]
- Khan, A.; Turowsk, K. A perspective on Industry 4.0: From challenges to opportunities in production systems. In Proceedings of the International Conference on Internet of Things and Big Data, Rome, Italy, 23–25 April 2016; pp. 441–448. [Google Scholar]
- Gezici, S.; Tian, Z.; Giannakis, G.B.; Ko-bayashi, H.; Molisch, A.F.; Vincent Poor, H.; Sahinoglu, Z. Localization via ultra-wideband radios. IEEE Signal Process. Mag. 2005, 22, 70–84. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Y.; Wang, S.; Wu, H. Energy efficient, reconfigurable, distributed pulse generation and detection in UWB impulse radios. In Proceedings of the IEEE International Conference on Ultra-Wideband, Vancouver, BC, Canada, 9–11 September 2009; pp. 773–777. [Google Scholar]
- Alonge, F.; Cucco, E.; D’Ippolito, F.; Pulizzotto, A. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis. Sensors 2014, 14, 8430–8446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.G. Position tracking system based on UWB and MEMS IMU. J. Korea Multimed. Soc. 2019, 22, 1011–1019. [Google Scholar]
- Mallat, A.; Vandendorpe, L. Joint estimation of the time delay and the clock drift and offset using UWB signals. In Proceedings of the IEEE International Conference on Communications, Sydney, Australia, 10–14 June 2014; pp. 5474–5480. [Google Scholar]
- Yang, L.; Giannakis, G.B. Ultra-wideband communications: An idea whose time has come. IEEE Signal Process. Mag. 2004, 21, 26–54. [Google Scholar] [CrossRef]
- Intrieria, E.; Giglia, G.; Gracchi, T.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Frodella, W.; Bertolini, G.; Carnevale, E.; Favalli, M.; et al. Application of an ultra-wide band sensor-free wireless network for ground monitoring. Eng. Geol. 2018, 238, 1–14. [Google Scholar] [CrossRef]
- Yao, L.; Andy Wu, Y.-W.; Yao, L.; Liao, Z.Z. An integrated IMU and UWB sensor based indoor positioning system. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Duru, A.; Sehirli, E.; Kabalci, I. Ultra-wideband positioning system using TWR and lateration methods. In Proceedings of the 4th International Conference on Engineering & MIS, Istanbul, Turkey, 19–20 June 2018; pp. 1–4. [Google Scholar]
- Conti, A.; Dardari, D.; Guerra, M.; Mucchi, L.; Win, M.Z. Experimental characterization of diversity navigation. IEEE Syst. J. 2014, 8, 115–124. [Google Scholar] [CrossRef]
- Lian Sang, C.; Adams, M.; Hörmann, T.; Hesse, M.; Porrmann, M.; Rückert, U. Numerical and experimental evaluation of error estimation for two-way ranging methods. Sensors 2019, 19, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, R.; Shukla, S.; Chandel, V. Lightweight localization using trilateration for sensor networks. Int. J. Wirel. Inf. Netw. 2014, 21, 89–100. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, K.; Lee, S.-C. An efficient localization method based on adaptive optimal sensor placement. Int. J. Distrib. Sens. Netw. 2014, 10, 983618. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yue, X.; Chen, J.; Deng, F. A novel robust trilateration method applied to ultra-wide bandwidth location systems. Sensors 2017, 17, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, G.; Li, L.; Lao, L. A localization algorithm based on geographical similarity of RSSI in wireless sensor networks. In Proceedings of the 2009 International Symposium on Computer Network and Multimedia Technology, Wuhan, China, 18–20 January 2009; pp. 1–5. [Google Scholar]
- Guosheng, W.; Shuqi, Q.; Qiang, L.; Heng, W.; Huican, L.; Bing, L. UWB and IMU system fusion for indoor navigation. In Proceedings of the 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 4936–4950. [Google Scholar]
- Li, X.; Wang, Y.; Khoshelham, K. A robust and adaptive complementary Kalman filter based on mahalanobis distance for ultra wideband inertial measurement unit fusion positioning. Sensors 2018, 18, 3435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Li, X.; Wang, J.; Zhang, J. An adaptive UWB MEMS-IMU complementary Kalman filter for indoor location in NLOS environment. Remote Sens. 2019, 11, 2628. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.F.; Kaseva, V.; Lohan, E.S. Wireless positioning in IoT: A look at current and future trends. Sensors 2018, 18, 2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascale, F.; Adinolfi, E.A.; Avaglian, M.; Giannella, V. A low energy IoT application using beacon for indoor localization. Appl. Sci. 2021, 11, 4902. [Google Scholar] [CrossRef]
Measurement Error [mm] | LOS | NLOS | ||
---|---|---|---|---|
x Axis | y Axis | x Axis | y Axis | |
Average | 68.01 | −29.56 | −43.25 | −45 |
Minimum | −194 | −194 | 289 | 107 |
Maximum | 195 | 188 | −382 | −237 |
Reference Values | Reference 1 | Reference 2 | Reference 3 | Reference 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | z | x | y | z | x | y | z | x | Y | z | |
Ref. coordinates (mm) | 0 | 0 | 1800 | 0 | 5000 | 1800 | 5000 | 0 | 1800 | 5000 | 5000 | 1800 |
Max. deviation measurement value (mm) | −43 | −58 | 1893 | 75 | 4943 | 1943 | 4947 | −62 | 1965 | 4948 | 4949 | 1624 |
Measurement absolute error (mm) | 43 | 58 | 93 | 75 | 57 | 143 | 53 | 62 | 165 | 52 | 51 | 176 |
Axial Direction | Ref. Coordinates (mm) | Mean Value (mm) | Mean Error (mm) | |
---|---|---|---|---|
x axis | Min. | 2800 | 2760 | 40 |
Max. | 3190 | 3191 | 41 | |
y axis | Min. | 2710 | 2730 | 30 |
Max. | 3090 | 3053 | 37 | |
z axis | Min. | 1500 | 1321 | 179 |
Max. | 1890 | 1985 | 95 |
Min/Max | Measurement Value (mm) | Moving Average (mm) | Kalman Filter [7] (mm) | Proposed Extended Kalman Filter (mm) | ||||
---|---|---|---|---|---|---|---|---|
x | y | X | y | x | y | x | Y | |
Min. | 2687.5 | 2673.3 | 2691.2 | 2679.2 | 2693.4 | 2683.2 | 2696.6 | 2686.8 |
Max. | 2722.1 | 2723.2 | 2709.6 | 2710.9 | 2708.4 | 2709.4 | 2707.4 | 2705.2 |
|Max.−Min.| | 34.6 | 49.9 | 18.4 | 31.7 | 15.0 | 26.2 | 10.8 | 18.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.-G.; Kwon, O.-J.; Kwon, K.-R.; Lee, S.-H. UWB and MEMS IMU Integrated Positioning Algorithm for a Work-Tool Tracking System. Appl. Sci. 2021, 11, 8826. https://doi.org/10.3390/app11198826
Kwon S-G, Kwon O-J, Kwon K-R, Lee S-H. UWB and MEMS IMU Integrated Positioning Algorithm for a Work-Tool Tracking System. Applied Sciences. 2021; 11(19):8826. https://doi.org/10.3390/app11198826
Chicago/Turabian StyleKwon, Seong-Geun, Oh-Jun Kwon, Ki-Ryong Kwon, and Suk-Hwan Lee. 2021. "UWB and MEMS IMU Integrated Positioning Algorithm for a Work-Tool Tracking System" Applied Sciences 11, no. 19: 8826. https://doi.org/10.3390/app11198826
APA StyleKwon, S. -G., Kwon, O. -J., Kwon, K. -R., & Lee, S. -H. (2021). UWB and MEMS IMU Integrated Positioning Algorithm for a Work-Tool Tracking System. Applied Sciences, 11(19), 8826. https://doi.org/10.3390/app11198826