Severity, Spatial Pattern and Statistical Analysis of Road Traffic Crash Hot Spots in Ethiopia
Abstract
:1. Introduction
2. Literature Review
- Targeting or identifying crash hot spots on the road network;
- Studying safety issues in each hot spot;
- Identifying contributing factors and design mitigations;
- Evaluating the safety effects of the possible mitigations;
- Prioritizing the hot spots to apply cost-effective safety mitigations; and
- Evaluating the effectiveness of applied treatments.
3. Methods and Materials
3.1. Study Area and Data Collection
3.2. Methods
3.2.1. Crash Severity
3.2.2. Getis Ord Gi*
3.2.3. Spatial Autocorrelation
4. Results and Discussions
4.1. Death Rate and Trend of Road Safety in Ethiopia
4.2. Crash Hot Spot Analysis of Ethiopian Regions and Towns
4.3. Crash Analysis of Oromia Region
4.3.1. Number of Deaths Due to RTCs in the Oromia Region
4.3.2. Crash Severity
4.3.3. Crashes in the Day of Week and Time of Day
4.3.4. Crashes by Collision Type
4.3.5. Crash Hot Spot Analysis
5. Limitation of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO (World Health Organization). Global Status Report on Road Safety; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Li, L.; Zhu, L.; Sui, D.Z. A GIS-based Bayesian approach for analyzing spatial-temporal patterns of intra-city motor vehicle crashes. J. Transp. Geogr. 2007, 15, 274–285. [Google Scholar] [CrossRef]
- Dereli, M.A.; Erdogan, S. A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods. Transp. Res. Part A Policy Pract. 2017, 103, 106–117. [Google Scholar] [CrossRef]
- Kwan, M.P. How GIS can help address the uncertain geographic context problem in social science research. Ann. GIS 2012, 18, 245–255. [Google Scholar] [CrossRef]
- Neutens, T. Accessibility, equity and health care: Review and research directions for transport geographers. J. Transp. Geogr. 2015, 43, 14–27. [Google Scholar] [CrossRef]
- Goodchild, M.F. Space, place and health. Ann. GIS 2015, 21, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Moellering, H. The potential uses of a computer animated film in the analysis of geographical patterns of traffic crashes. Accid. Anal. Prev. 1976, 8, 215–227. [Google Scholar] [CrossRef]
- Mohaymany, A.S.; Shahri, M.; Mirbagheri, B. GIS-based method for detecting high-crash-risk road segments using network kernel density estimation. Geo-Spatial Inf. Sci. 2013, 16, 113–119. [Google Scholar] [CrossRef]
- Lloyd, C.D. Spatial Data Analysis: An Introduction for GIS Users; Oxford University Press: New York, NY, USA, 2010; ISBN 9780199554324. [Google Scholar]
- Loo, B.P.Y.; Anderson, T.K. Spatial Analysis Methods of Road Traffic Collisions; CRC Press: New York, NY, USA, 2015; ISBN 9781315266398. [Google Scholar]
- Lord, D.; Mannering, F. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transp. Res. Part A Policy Pract. 2010, 44, 291–305. [Google Scholar] [CrossRef] [Green Version]
- Mehta, G.S. Analyzing Crash Frequency and Severity Data Using Novel Techniques. Ph.D. Thesis, University of Alabama, Tuscaloosa, AL, USA, 2014. [Google Scholar]
- Mannering, F.L.; Bhat, C.R. Analytic methods in accident research: Methodological frontier and future directions. Anal. Methods Accid. Res. 2014, 1, 1–22. [Google Scholar] [CrossRef]
- Lagarde, E. Road Traffic Injury Is an Escalating Burden in Africa and Deserves Proportionate Research Efforts. PLoS Med. 2007, 4, 170. [Google Scholar] [CrossRef] [Green Version]
- Elvik, R.; Høye, A.; Vaa, T.; Sørensen, M. The Handbook of Road Safety Measures, 2nd ed.; Emerald Group Publishing Limited: Bingley, WA, UK, 2009; ISBN 9781848552500. [Google Scholar]
- Yao, S.; Loo, B.P.Y.; Yang, B.Z. Traffic collisions in space: Four decades of advancement in applied GIS. Ann. GIS 2016, 22, 1–14. [Google Scholar] [CrossRef]
- Anderson, T.K. Kernel density estimation and K-means clustering to profile road accident hotspots. Accid. Anal. Prev. 2009, 41, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Vemulapalli, S.S.; Ulak, M.B.; Ozguven, E.E.; Sando, T.; Horner, M.W.; Abdelrazig, Y.; Moses, R. GIS-based Spatial and Temporal Analysis of Aging-Involved Accidents: A Case Study of Three Counties in Florida. Appl. Spat. Anal. Policy 2017, 10, 537–563. [Google Scholar] [CrossRef]
- Le, K.G.; Liu, P.; Lin, L. Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam. Geo-Spat. Inf. Sci. 2019, 23, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Abegaz, T.; Gebremedhin, S. Magnitude of road traffic accident related injuries and fatalities in Ethiopia. PLoS ONE 2019, 14, e0202240. [Google Scholar] [CrossRef] [Green Version]
- Guyu, F. Identifying major urban road traffic accident black-spots (RTABSs): A sub-city based analysis of evidences from the city of Addis Ababa, Ethiopia. J. Sustain. Dev. Afr. 2013, 15, 110–130. [Google Scholar]
- Anteneh, A.; Endris, B.S. Injury related adult deaths in Addis Ababa, Ethiopia: Analysis of data from verbal autopsy. BMC Public Health 2020, 20, 926. [Google Scholar] [CrossRef] [PubMed]
- Hayidso, T.H.; Gemeda, D.O.; Abraham, A.M. Identifying Road Traffic Accidents Hotspots Areas Using GIS in Ethiopia: A Case Study of Hosanna Town. Transp. Telecommun. J. 2019, 20, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Geurts, K.; Wets, G. Black Spot Analysis Methods: Literature Review; Steunpunt Verkeersveiligheid: Diepenbeek, Belgium, 2003; Volume RA-2003-07. [Google Scholar]
- Vistisen, D. Models and Methods for Hot Spot Safety Work. Ph.D. Thesis, Technical University of Denmark DTU, Lyngby, Denmark, 2002. [Google Scholar]
- Sweroad. General Directorate of Highways, A. Road Improvement and Traffic Safety Project: Black Spot Manual; Sweroad: Ankara, Turkey, 2001; pp. 1–82. [Google Scholar]
- Taylor, M.A.P.; Bonsall, P.W.; Young, W. Understanding Traffic Systems: Data Analysis and Presentation, 2nd ed.; Taylor and Francis Group: Oxford, UK, 2017; ISBN 9781315235370. [Google Scholar]
- Yuan, T.; Zeng, X.; Shi, T. Identifying Urban Road Black Spots with a Novel Method Based on the Firefly Clustering Algorithm and a Geographic Information System. Sustainability 2020, 12, 2091. [Google Scholar] [CrossRef] [Green Version]
- Gundogdu, I.B. Applying linear analysis methods to GIS-supported procedures for preventing traffic accidents: Case study of Konya. Saf. Sci. 2010, 48, 763–769. [Google Scholar] [CrossRef]
- Zhang, C.; Ivan, J.N. Effects of geometric characteristics on head-on crash incidence on two-lane roads in Connecticut. Transp. Res. Rec. 2005, 159–164. [Google Scholar] [CrossRef]
- Elvik, R. Comparative analysis of techniques for identifying locations of hazardous roads. Transp. Res. Rec. 2008, 72–75. [Google Scholar] [CrossRef]
- Sacchi, E.; Sayed, T.; El-Basyouny, K. Multivariate full Bayesian hot spot identification and ranking new technique. Transp. Res. Rec. 2015, 1–9. [Google Scholar] [CrossRef]
- Erdogan, S.; Yilmaz, I.; Baybura, T.; Gullu, M. Geographical information systems aided traffic accident analysis system case study: City of Afyonkarahisar. Accid. Anal. Prev. 2008, 40, 174–181. [Google Scholar] [CrossRef]
- Xie, Z.; Yan, J. Kernel Density Estimation of traffic accidents in a network space. Comput. Environ. Urban Syst. 2008, 32, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Adv. Spat. Sci. 2010, 61, 127–145. [Google Scholar] [CrossRef]
- Lee, M.; Khattak, A.J. Case Study of Crash Severity Spatial Pattern Identification in Hot Spot Analysis. Transp. Res. Rec. 2019. [Google Scholar] [CrossRef]
- Levine, N. CrimeStat II: A spatial Statistics Program for the Analysis of Crime Incident Locations, Part I.; The National Institute of Justice: Washington, DC, USA, 2002.
- Ziakopoulos, A.; Yannis, G. A review of spatial approaches in road safety. Accid. Anal. Prev. 2020, 135, 105323. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, K.; Zhang, C.; Tunney, H. Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots. J. Plant Nutr. Soil Sci. 2011, 174, 785–798. [Google Scholar] [CrossRef]
- Cheng, Z.; Zu, Z.; Lu, J. Traffic Crash Evolution Characteristic Analysis and Spatiotemporal Hotspot Identification of Urban Road Intersections. Sustainability 2019, 11, 160. [Google Scholar] [CrossRef] [Green Version]
- Yamada, I.; Thill, J.C. Comparison of planar and network K-functions in traffic accident analysis. J. Transp. Geogr. 2004, 12, 149–158. [Google Scholar] [CrossRef]
- Plug, C.; Xia, J.; Caulfield, C. Spatial and temporal visualisation techniques for crash analysis. Accid. Anal. Prev. 2011, 43, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Bíl, M.; Andrášik, R.; Janoška, Z. Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation. Accid. Anal. Prev. 2013, 55, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Bíl, M.; Andrášik, R.; Svoboda, T.; Sedoník, J. The KDE+ software: A tool for effective identification and ranking of animal-vehicle collision hotspots along networks. Landsc. Ecol. 2016, 31, 231–237. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Lee, J. Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS; Geographic Information Science; Wiley: Hoboken, NJ, USA, 2005; ISBN 9780471468998. [Google Scholar]
- Erdogan, S. Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey. J. Safety Res. 2009, 40, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.; Qin, X.; Noyce, D.A. Spatial analysis of weather crash patterns. J. Transp. Eng. 2008, 134, 191–202. [Google Scholar] [CrossRef]
- Tola, A.M.; Gebissa, A. Identifying Black Spot Accident Zones using a Geographical Information System on Kombolcha-Dessie Road in Ethiopia. Int. J. Sci. Basic Appl. Res. 2019, 48, 1–12. [Google Scholar]
- Geurts, K.; Wets, G.; Brijs, T.; Vanhoof, K. Identification and ranking of black spots: Sensitivity analysis. Transp. Res. Rec. 2004, 1897, 34–42. [Google Scholar] [CrossRef]
- NSW Road Safety and Traffic Management Directorate. Road Traffic Accidents in New South Wales–1997-Statistical Statement: Year Ended 31 December 1997; Roads and Traffic Authority of NSW: Surry Hills, NSW, Australia, 1999. [Google Scholar]
- Mitra, S. Spatial autocorrelation and Bayesian spatial statistical method for analyzing intersections Prone to injury crashes. Transp. Res. Rec. 2009, 2136, 92–100. [Google Scholar] [CrossRef]
- Songchitruksa, P.; Zeng, X. Getis–Ord Spatial Statistics to Identify Hot Spots by Using Incident Management Data. Transp. Res. Rec. J. Transp. Res. Board 2010, 2165, 42–51. [Google Scholar] [CrossRef]
- Erdogan, S.; Ilçi, V.; Soysal, O.M.; Kormaz, A. A model suggestion for the determination of the traffic accident hotspots on the Turkish highway road network: A pilot study. Bol. Ciênc. Geodésicas 2015, 21, 169–188. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Unwin, D.J. Geographic Information Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 9780470288573. [Google Scholar]
- Maingi, J.K.; Mukeka, J.M.; Kyale, D.M.; Muasya, R.M. Spatiotemporal patterns of elephant poaching in South-Eastern Kenya. Wildl. Res. 2012, 39, 234–249. [Google Scholar] [CrossRef]
- Blank, L.; Cohen, Y.; Borenstein, M.; Shulhani, R.; Lofthouse, M.; Sofer, M.; Shtienberg, D. Variables Associated with Severity of Bacterial Canker and Wilt Caused by Clavibacter Michiganensis Subsp. Michiganensis in Tomato Greenhouses. Phytopathology 2016, 106, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ERA (Ethiopian Roads Authority). Road Sector Development Program 21 Years Performance Assessment; ERA (Ethiopian Roads Authority): Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Federal Transport Authority. Registered Vehicle Statistics; Federal Transport Authority: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- ESRI Multi-Distance Spatial Cluster Analysis (Ripley’s k-Function). Available online: http://resources.esri.com/help/9.3/arcgisdesktop/com/gp_toolref/spatial_statistics_tools/multi_distance_spatial_cluster_analysis_ripley_s_k_function_spatial_statistics_.htm (accessed on 15 September 2021).
- World Bank. Addis Ababa, Ethiopia—Enhancing Urban Resilience (City Strength: Resilient Cities Program); World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Ethiopian Roads Authority (ERA). Urban Transport Study and Preparation of Pilot Project of Addis Ababa Final Report; Ethiopian Roads Authority (ERA): Addis Ababa, Ethiopia, 2005. [Google Scholar]
- Samson, F. Analysis of Traffic Accident in Addis Ababa: Traffic Simulation. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2006. [Google Scholar]
- Tulu, G.S.; Washington, S.; Haque, M.M.; King, M.J. Injury severity of pedestrians involved in road traffic crashes in Addis Ababa, Ethiopia. J. Transp. Saf. Secur. 2017, 9, 47–66. [Google Scholar] [CrossRef]
- World Bank Group. Scoping Study—Urban Mobility in Three Cities: Addis Ababa, Dar es Salaam, and Nairobi (English); World Bank Group: Washington, DC, USA, 2002. [Google Scholar]
- Oromia Traffic Police Bureau. Annual Crash Data Report; Oromia Traffic Police Bureau: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Quisumbing, A.R.; Yohannes, Y. How Fair is Workfare? Gender, Public Works, and Employment in Rural Ethiopia; Policy Research Working Papers; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Al-Balbissi, A.H. Role of gender in road accidents. Traffic Inj. Prev. 2003, 4, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordellieri, P.; Baralla, F.; Ferlazzo, F.; Sgalla, R.; Piccardi, L.; Giannini, A.M. Gender effects in young road users on road safety attitudes, behaviors and risk perception. Front. Psychol. 2016, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.L.; Lafont, S.; Chiron, M.; Gadegbeku, B.; Laumon, B. Différences entre les hommes et les femmes face au risque routier. Rev. Epidemiol. Sante Publique 2004, 52, 357–367. [Google Scholar] [CrossRef]
- Liu, C.; Ye, T.J. Run-Off-Road Crashes: An On-Scene Perspective; National Highway Traffic Safety Administration: Washington, DC, USA, 2011; p. 20590.
- Kebede, A.; Gebresenbet, G. Mapping out goods flow to Addis Ababa city, Ethiopia, and it impact on environment. Transp. Res. Procedia 2017, 25, 1008–1020. [Google Scholar] [CrossRef]
OBJ_ID | Crash Severity | Shape_L. (m) | Shape_A. (m2) | GiZScore | GiPValue | NNeighbors | Region_Names |
---|---|---|---|---|---|---|---|
1 | 109,518 | 106,098 | 525,638,401 | 2.87230 | 0.00407 | 3 | Addis Ababa |
8 | 30,661 | 6,403,850 | 355,423,484,208 | 2.55848 | 0.01051 | 3 | Oromia |
9 | 11,192 | 2,806,015 | 117,263,152,867 | 0.85676 | 0.39158 | 3 | SNNP |
2 | 19,831 | 2,689,742 | 153,443,579,103 | 0.49482 | 0.62073 | 5 | Amhara |
11 | 8201 | 1,580,725 | 56,451,528,629 | −0.07804 | 0.93780 | 3 | Tigrai |
4 | 1477 | 1,630,480 | 48,889,173,519 | −0.54855 | 0.58331 | 3 | B_Gumuz |
6 | 845 | 908,665 | 25,649,364,273 | −0.86238 | 0.38848 | 3 | Gambella |
3 | 1693 | 1,920,341 | 95,242,894,663 | −0.94792 | 0.34317 | 5 | Afar |
10 | 2179 | 3,677,531 | 278,073,581,426 | −1.40998 | 0.15855 | 3 | Somali R. |
5 | 2780 | 215,410 | 1,507,085,646 | −1.77287 | 0.07625 | 4 | Dire-Dawa |
7 | 8201 | 93,895 | 394,011,903 | −1.77287 | 0.07625 | 4 | Harari |
Year | Fatal | Serious Injury | Slight Injury | PDO | Total |
---|---|---|---|---|---|
2014 | 1310 | 901 | 1100 | 1722 | 5033 |
2015 | 1356 | 623 | 515 | 1446 | 3940 |
2016 | 1188 | 568 | 518 | 1626 | 3900 |
2017 | 1319 | 729 | 532 | 1806 | 4386 |
Percentage (%) | 29.97 | 16.35 | 15.44 | 38.24 | 100 |
OBJ_ID | Crash Severity | Shape L. (m) | Shape_A. (m2) | GiZScore | GiPValue | NNeighbors | Zone_Names |
---|---|---|---|---|---|---|---|
7 | 1520 | 1,269,948 | 9,892,678,054 | 2.90573 | 0.00366 | 8 | E.Shewa |
20 | 429 | 60,226 | 85,906,978 | 2.80042 | 0.00510 | 7 | Burayu T. |
6 | 1501 | 913,429 | 11,530,834,348 | 2.13166 | 0.03303 | 7 | N.Shewa |
5 | 1488 | 1,577,743 | 14,806,415,071 | 2.01316 | 0.04410 | 7 | W.Shewa |
15 | 712 | 25,993 | 29,858,260 | 2.01316 | 0.04410 | 7 | Adama T. |
13 | 1154 | 681,347 | 6,508,288,032 | 2.00548 | 0.04491 | 8 | S-W.Shewa |
19 | 149 | 756,608 | 8,097,272,756 | 1.59692 | 0.11028 | 5 | H.G.Wellega |
17 | 885 | 1,080,199 | 11,776,723,820 | 1.31245 | 0.18937 | 4 | W.Arsi |
10 | 1155 | 1,390,038 | 18,239,926,953 | 0.80006 | 0.42367 | 2 | E.Hararge |
9 | 724 | 768,631 | 16,523,003,204 | 0.73969 | 0.45949 | 4 | W.Hararge |
8 | 798 | 909,816 | 20,696,957,154 | 0.41390 | 0.67895 | 7 | Arsi |
4 | 634 | 1,009,026 | 18,075,624,315 | −0.19253 | 0.84733 | 5 | Jimma_Zone |
2 | 597 | 980,901 | 13,830,420,375 | −0.19309 | 0.84689 | 6 | E.Wellega |
14 | 649 | 985,714 | 18,577,054,735 | −0.43489 | 0.66364 | 3 | Guji |
16 | 303 | 38,118 | 50,520,944 | −0.72780 | 0.46674 | 3 | Jimma_City |
12 | 246 | 3,121,707 | 45,463,584,611 | −0.82827 | 0.40752 | 2 | Borena |
18 | 352 | 642,890 | 9,851,170,119 | −0.83608 | 0.40311 | 3 | Kelem_Wellega |
1 | 507 | 892,523 | 12,744,967,754 | −0.86970 | 0.38446 | 4 | W.Wellega |
3 | 632 | 999,481 | 16,516,931,736 | −1.24901 | 0.21166 | 6 | I.A.Bora |
11 | 218 | 1,434,621 | 44,912,392,310 | −1.49546 | 0.13479 | 3 | Bale |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tola, A.M.; Demissie, T.A.; Saathoff, F.; Gebissa, A. Severity, Spatial Pattern and Statistical Analysis of Road Traffic Crash Hot Spots in Ethiopia. Appl. Sci. 2021, 11, 8828. https://doi.org/10.3390/app11198828
Tola AM, Demissie TA, Saathoff F, Gebissa A. Severity, Spatial Pattern and Statistical Analysis of Road Traffic Crash Hot Spots in Ethiopia. Applied Sciences. 2021; 11(19):8828. https://doi.org/10.3390/app11198828
Chicago/Turabian StyleTola, Alamirew Mulugeta, Tamene Adugna Demissie, Fokke Saathoff, and Alemayehu Gebissa. 2021. "Severity, Spatial Pattern and Statistical Analysis of Road Traffic Crash Hot Spots in Ethiopia" Applied Sciences 11, no. 19: 8828. https://doi.org/10.3390/app11198828
APA StyleTola, A. M., Demissie, T. A., Saathoff, F., & Gebissa, A. (2021). Severity, Spatial Pattern and Statistical Analysis of Road Traffic Crash Hot Spots in Ethiopia. Applied Sciences, 11(19), 8828. https://doi.org/10.3390/app11198828