Variational Bayesian Approach to Condition-Invariant Feature Extraction for Visual Place Recognition
Abstract
:1. Introduction
2. Preliminaries
3. Proposed VAE Using Context Information
4. Robot Localization Using Condition-Invariant Features
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLAM | Simultaneous Localization And Mapping |
SIFT | Scale Invariant Feature Transform |
SURF | Speeded Up Robust Features |
HOG | Histogram of Oriented Gradients |
CNNs | Convolutional Neural Networks |
CAEs | Convolutional Auto Encoders |
VAEs | Variational Auto Encoders |
References
- Lowry, S.; Sünderhauf, N.; Newman, P.; Leonard, J.J.; Cox, D.; Corke, P.; Milford, M.J. Visual place recognition: A survey. IEEE Trans. Robot. 2016, 32, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sattler, T.; Maddern, W.; Toft, C.; Torii, A.; Hammarstrand, L.; Stenborg, E.; Safari, D.; Okutomi, M.; Pollefeys, M.; Sivic, J.; et al. Benchmarking 6dof outdoor visual localization in changing conditions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8601–8610. [Google Scholar]
- Sünderhauf, N.; Protzel, P. BRIEF-Gist—Closing the loop by simple means. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Brisbane, Australia, 25–30 September 2011; pp. 1234–1241. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H. Visual loop closure detection with a compact image descriptor. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1051–1056. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image. Und. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Torralba, A.; Fergus, R.; Weiss, Y. Small codes and large image databases for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings of the International Conference on Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Arandjelović, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1437–1451. [Google Scholar] [CrossRef] [Green Version]
- Chancán, M.; Hernandez-Nunez, L.; Narendra, A.; Barron, A.B.; Milford, M. A hybrid compact neural architecture for visual place recognition. IEEE Robot. Autom. Lett. 2020, 5, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Sünderhauf, N.; Shirazi, S.; Jacobson, A.; Dayoub, F.; Pepperell, E.; Upcroft, B.; Milford, M. Place recognition with convnet landmarks: Viewpoint-robust, condition-robust, training-free. In Proceedings of the International Conference on Robotics: Science and Systems. Robotics: Science and Systems Conference, Rome, Italy, 13–17 July 2015; pp. 1–10. [Google Scholar]
- Garg, S.; Sünderhauf, N.; Milford, M. Don’t look back: Robustifying place categorization for viewpoint-and condition-invariant place recognition. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018; pp. 3645–3652. [Google Scholar]
- Naseer, T.; Ruhnke, M.; Stachniss, C.; Spinello, L.; Burgard, W. Robust visual SLAM across seasons. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 2529–2535. [Google Scholar]
- Oh, J.H.; Lee, B.H. Dynamic programming approach to visual place recognition in changing environments. Electron. Lett. 2017, 53, 391–393. [Google Scholar] [CrossRef]
- Park, C.; Chae, H.W.; Song, J.B. Robust Place Recognition Using Illumination-compensated Image-based Deep Convolutional Autoencoder Features. Int. J. Control Autom. Syst. 2020, 18, 2699–2707. [Google Scholar] [CrossRef]
- Kingma, D.; Welling, M. Auto-encoding variational Bayes. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Pu, Y.; Gan, Z.; Henao, R.; Yuan, X.; Li, C.; Stevens, A.; Carin, L. Variational autoencoder for deep learning of images, labels and captions. In Proceedings of the International Conferene on Advances in neural information processing systems (NIPS), Barcelona, Spain, 5–10 December 2016; Volume 29, pp. 2352–2360. [Google Scholar]
- Oh, J.; Han, C.; Lee, S. Condition-invariant robot localization using global sequence alignment of deep features. Sensors 2021, 21, 4103. [Google Scholar] [CrossRef] [PubMed]
- Sünderhauf, N.; Neubert, P.; Protzel, P. Are we there yet? Challenging SeqSLAM on a 3000 km journey across all four seasons. In Proceedings of the Workshop on Long-Term Autonomy, IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013. [Google Scholar]
- Olid, D.; Fácil, J.M.; Civera, J. Single-view place recognition under seasonal changes. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshops, Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Choi, Y.; Kim, N.; Park, K.; Hwang, S.; Yoon, J.; Kweon, I.S. All-day visual place recognition: Benchmark dataset and baseline. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Milford, M.; Wyeth, G. SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), St Paul, MN, USA, 14–19 May 2012; pp. 1643–1649. [Google Scholar]
- Cummins, M.; Newman, P. Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. 2011, 30, 1100–1123. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2015. [Google Scholar]
Layer | Input Size | Output Size |
---|---|---|
conv1 | 224 × 224 × 3 | 112 × 112 × 32 |
conv2 | 112 × 112 × 32 | 56 × 56 × 64 |
conv3 | 56 × 56 × 64 | 28 × 28 × 64 |
conv4 | 28 × 28 × 64 | 14 × 14 × 128 |
conv5 | 14 × 14 × 128 | 7 × 7 × 128 |
fc6 | 6272 | 4096 |
fc7 | 4096 | 2048 |
fc8 | 2048 | 1024 |
fc9 | 1024 | 512 |
z_mean | 512 | 128 |
z_var | 512 | 128 |
sampling | 128, 128 | 128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Eoh, G. Variational Bayesian Approach to Condition-Invariant Feature Extraction for Visual Place Recognition. Appl. Sci. 2021, 11, 8976. https://doi.org/10.3390/app11198976
Oh J, Eoh G. Variational Bayesian Approach to Condition-Invariant Feature Extraction for Visual Place Recognition. Applied Sciences. 2021; 11(19):8976. https://doi.org/10.3390/app11198976
Chicago/Turabian StyleOh, Junghyun, and Gyuho Eoh. 2021. "Variational Bayesian Approach to Condition-Invariant Feature Extraction for Visual Place Recognition" Applied Sciences 11, no. 19: 8976. https://doi.org/10.3390/app11198976
APA StyleOh, J., & Eoh, G. (2021). Variational Bayesian Approach to Condition-Invariant Feature Extraction for Visual Place Recognition. Applied Sciences, 11(19), 8976. https://doi.org/10.3390/app11198976