Perioperative Chemotherapy with FLOT Scheme in Resectable Gastric Adenocarcinoma: A Preliminary Correlation between TRG and Radiomics
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CT Acquisition Protocol
2.3. Image Segmentation Analysis
2.4. Radiomics Features Extraction
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Demographic Characteristics
3.3. Pathological and Long-Term Oncological Outcomes
3.4. Radiomics Features Extraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 2017, 20, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Smyth, E.C.; Verheij, M.; Allum, W.; Cunningham, D.; Cervantes, A.; Arnold, D.; Committee, E.G. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v38–v49. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuss, P.; Wolfgang, F.; Jorg, T.; Michael, K.; Claudia, P.; Thorsten Oliver, G.; Elke, J.; Johannes, M.; Martin, H.S.; Ralf Hofheinz, S.-E.A.-B.; et al. Perioperative chemotherapy with docetaxel, oxaliplatin, and fluorouracil/leucovorin (FLOT) versus epirubicin, cisplatin, and fluorouracil or capecitabine (ECF/ECX) for resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma (FLOT4-AIO): A multicenter, randomized phase 3 trial. J. Clin. Oncol. 2017. [Google Scholar] [CrossRef]
- Smyth, E.C.; Wotherspoon, A.; Peckitt, C.; Gonzalez, D.; Hulkki-Wilson, S.; Eltahir, Z.; Fassan, M.; Rugge, M.; Valeri, N.; Okines, A.; et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol. 2017, 3, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, A.; Pompella, L.; Tirino, G.; Pappalardo, A.; Laterza, M.M.; Caterino, M.; Orditura, M.; Ciardiello, F.; Lieto, E.; Galizia, G.; et al. Perioperative Treatment in Resectable Gastric Cancer: Current Perspectives and Future Directions. Cancers 2019, 11, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohlruss, M.; Grosser, B.; Krenauer, M.; Slotta-Huspenina, J.; Jesinghaus, M.; Blank, S.; Novotny, A.; Reiche, M.; Schmidt, T.; Ismani, L.; et al. Prognostic implication of molecular subtypes and response to neoadjuvant chemotherapy in 760 gastric carcinomas: Role of Epstein-Barr virus infection and high- and low-microsatellite instability. J. Pathol. Clin. Res. 2019, 5, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cecco, C.N.; Ganeshan, B.; Ciolina, M.; Rengo, M.; Meinel, F.G.; Musio, D.; De Felice, F.; Raffetto, N.; Tombolini, V.; Laghi, A. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Investig. Radiol. 2015, 50, 239–245. [Google Scholar] [CrossRef]
- Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.; Mancini-Terracciano, C.; Voena, C.; Rengo, M.; Zerunian, M.; Ciardiello, A.; Grasso, S.; Mare, V.; Paramatti, R.; Russomando, A.; et al. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Eur. J. Radiol. 2019, 118, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; Zerunian, M.; Ciolina, M.; de Santis, D.; Rengo, M.; Soomro, M.H.; Giunta, G.; Conforto, S.; Schmid, M.; Neri, E.; et al. Haralick’s texture features for the prediction of response to therapy in colorectal cancer: A preliminary study. Radiol. Med. 2018, 123, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; Polici, M.; Zerunian, M.; Pucciarelli, F.; Guido, G.; Polidori, T.; Landolfi, F.; Nicolai, M.; Lucertini, E.; Tarallo, M.; et al. Radiomics in Oncology, Part 1: Technical Principles and Gastrointestinal Application in CT and MRI. Cancers 2021, 13, 2522. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; Polici, M.; Zerunian, M.; Pucciarelli, F.; Guido, G.; Polidori, T.; Landolfi, F.; Nicolai, M.; Lucertini, E.; Tarallo, M.; et al. Radiomics in Oncology, Part 2: Thoracic, Genito-Urinary, Breast, Neurological, Hematologic and Musculoskeletal Applications. Cancers 2021, 13, 2681. [Google Scholar] [CrossRef]
- Giganti, F.; Antunes, S.; Salerno, A.; Ambrosi, A.; Marra, P.; Nicoletti, R.; Orsenigo, E.; Chiari, D.; Albarello, L.; Staudacher, C.; et al. Gastric cancer: Texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker. Eur. Radiol. 2017, 27, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, D.; Dai, Y.; Dong, J.; Wu, L.; Li, Y.; Cheng, Z.; Ding, Y.; Liu, Z. Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: A pilot study. Chin. J. Cancer Res. 2018, 30, 406–414. [Google Scholar] [CrossRef]
- Giganti, F.; Marra, P.; Ambrosi, A.; Salerno, A.; Antunes, S.; Chiari, D.; Orsenigo, E.; Esposito, A.; Mazza, E.; Albarello, L.; et al. Pre-treatment MDCT-based texture analysis for therapy response prediction in gastric cancer: Comparison with tumour regression grade at final histology. Eur. J. Radiol. 2017, 90, 129–137. [Google Scholar] [CrossRef]
- Becker, K.; Mueller, J.D.; Schulmacher, C.; Ott, K.; Fink, U.; Busch, R.; Bottcher, K.; Siewert, J.R.; Hofler, H. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003, 98, 1521–1530. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- AJCC—AJCC 8th Edition Cancer Staging Form, Histology and Topography Supplements Available Now. Available online: https://cancerstaging.org/About/news/Pages/AJCC-8th-Edition-Cancer-Staging-Form-and-Histology-and-Topography-Supplements-Available-Now.aspx (accessed on 28 March 2021).
- Caruso, D.; Rosati, E.; Panvini, N.; Rengo, M.; Bellini, D.; Moltoni, G.; Bracci, B.; Lucertini, E.; Zerunian, M.; Polici, M.; et al. Optimization of contrast medium volume for abdominal CT in oncologic patients: Prospective comparison between fixed and lean body weight-adapted dosing protocols. Insights Imaging 2021, 12, 40. [Google Scholar] [CrossRef]
- Caruso, D.; De Santis, D.; Rivosecchi, F.; Zerunian, M.; Panvini, N.; Montesano, M.; Biondi, T.; Bellini, D.; Rengo, M.; Laghi, A. Lean Body Weight-Tailored Iodinated Contrast Injection in Obese Patient: Boer versus James Formula. Biomed. Res. Int. 2018, 2018, 8521893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, D.; Zerunian, M.; Pucciarelli, F.; Bracci, B.; Polici, M.; D’Arrigo, B.; Polidori, T.; Guido, G.; Barbato, L.; Polverari, D.; et al. Influence of Adaptive Statistical Iterative Reconstructions on CT Radiomic Features in Oncologic Patients. Diagnostics 2021, 11, 1000. [Google Scholar] [CrossRef]
- Ma, Z.; Fang, M.; Huang, Y.; He, L.; Chen, X.; Liang, C.; Huang, X.; Cheng, Z.; Dong, D.; Xie, J.; et al. CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma. Eur. J. Radiol. 2017, 91, 142–147. [Google Scholar] [CrossRef] [PubMed]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Neves Filho, E.H.; de Sant’Ana, R.O.; Nunes, L.V.; Pires, A.P.; da Cunha, M.D. Histopathological regression of gastric adenocarcinoma after neoadjuvant therapy: A critical review. APMIS 2017, 125, 79–84. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.; Ji, C.; Zheng, H.; Pan, X.; Zhang, Y.; Guan, W.; Chen, L.; Guan, Y.; Li, W.; et al. Application of CT texture analysis in predicting histopathological characteristics of gastric cancers. Eur. Radiol. 2017, 27, 4951–4959. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Yu, Y.; Liu, J.J.; Xue, H.D.; Qi, Y.F.; Lei, J.; Yu, J.C.; Jin, Z.Y. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur. Radiol. 2020, 30, 976–986. [Google Scholar] [CrossRef]
- Sun, K.Y.; Hu, H.T.; Chen, S.L.; Ye, J.N.; Li, G.H.; Chen, L.D.; Peng, J.J.; Feng, S.T.; Yuan, Y.J.; Hou, X.; et al. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer. BMC Cancer 2020, 20, 468. [Google Scholar] [CrossRef] [PubMed]
- Braman, N.M.; Etesami, M.; Prasanna, P.; Dubchuk, C.; Gilmore, H.; Tiwari, P.; Plecha, D.; Madabhushi, A. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res. 2017, 19, 57. [Google Scholar] [CrossRef] [PubMed]
- Ganeshan, B.; Goh, V.; Mandeville, H.C.; Ng, Q.S.; Hoskin, P.J.; Miles, K.A. Non-small cell lung cancer: Histopathologic correlates for texture parameters at CT. Radiology 2013, 266, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, M.A.; Nardone, V.; Di Giacomo, L.; Bagnacci, G.; Gentili, F.; Tini, P.; Marrelli, D.; Volterrani, L. The role of delta radiomics in gastric cancer. Quant. Imaging Med. Surg. 2018, 8, 719–721. [Google Scholar] [CrossRef] [PubMed]
Responders n = 6 | Non-Responders n = 9 | p | |
---|---|---|---|
Age (years, mean ±SD) | 59.9 (±12.6) | 64.8 (±15.2) | 0.224 |
Gender F/M | 3/3 | 3/6 | 0.519 |
BMI (mean, ±SD) | 23.8 (±2.2) | 24.8 (±3.1) | 0.639 |
ASA (n, %) | 0.174 | ||
1 | 0 (0.0%) | 1 (11.1%) | |
2 | 3 (50.0%) | 2 (22.2%) | |
3 | 3 (50.0%) | 6 (66.6%) | |
4 | 0 (0.0%) | 0 (0.0%) | |
Comorbidities (n, %) | 3 (50.0%) | 4 (44.4%) | 0.408 |
Histotype | 0.274 | ||
Non poorly cohesive | 3 (50.0%) | 6 (66.6%) | |
Poorly cohesive | 2 (33.3%) | 0 (0.0%) | |
Poorly cohesive, signet-ring cell | 0 (0.0%) | 1 (11.1%) | |
Mixed | 1 (16.7%) | 2 (22.2%) | |
Tumor Location | 0.255 | ||
Cardias | 1 (16.7%) | 0 (0.0%) | |
Subcardial | 1 (16.7%) | 1 (11.1%) | |
Fundus | 0 (0.0%) | 0 (0.0%) | |
Body | 0 (0.0%) | 1 (11.1%) | |
Angulus | 2 (33.3%) | 1 (11.1%) | |
Antrum | 1 (16.7%) | 6 (66.7%) | |
Pylorus | 1 (16.7%) | 0 (0.0%) | |
Tumor size (cm, mean ±SD) | 2.2 (±0.8) | 3.4 (±1.1) | 0.073 |
Responders n = 6 | Non- Responders n = 9 | p | |
---|---|---|---|
T-stage (n, %) | 0.315 | ||
ypT1 | 3 (50.0%) | 2 (22.2%) | |
ypT2 | 1 (16.7%) | 3 (33.3%) | |
ypT3 | 1 (16.7%) | 4 (44.4%) | |
ypT4a | 1 (16.7%) | 0 (0.0%) | |
ypT4b | 0 (0.0%) | 0 (0.0%) | |
N-stage (n, %) | 0.397 | ||
ypN0 | 5 (83.3%) | 4 (44.4%) | |
ypN1 | 0 (0.0%) | 1 (11.1%) | |
ypN2 | 0 (0.0%) | 2 (22.2%) | |
ypN3 | 1 (16.7%) | 2 (22.2%) | |
M-stage (n, %) | 1.000 | ||
ypM0 | 6 (100%) | 9 (100%) | |
ypM1 | 0 (0.0%) | 0 (0.0%) | |
R0 resection (n, %) | 6 (100%) | 9 (100%) | 1.000 |
Retrieved nodes (mean ±SD) | 26.0 (±10.5) | 24.2 (±7.3) | 1.000 |
Positive nodes (mean ±SD) | 2.7 (±6.5) | 3.4 (±3.9) | 0.388 |
Node ratio (mean ±SD) | 0.1 (±0.3) | 0.1 (±0.1) | 0.388 |
Lymphovascular invasion (n, %) | 2 (33.3%) | 4 (44.4%) | 1.000 |
Perineural invasion (n, %) | 1 (16.7%) | 3 (33.3%) | 0.604 |
ypTNM stage (n, %) | 0.774 | ||
yI | 3 (50.0%) | 3 (33.3%) | |
yII | 2 (33.3%) | 4 (44.4%) | |
yIII | 1 (16.7%) | 1 (11.1%) | |
yIV | 0 (0.0%) | 1 (11.1%) |
Features (±SD) | Student’s t Test/Mann–Whitney U | ROC Curve Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
Responders | Non-Responders | p | AUC | Sensibility | Specificity | 95%CI | p | ||
Shape | LeastAxisLength | 40,710,033,491,504,200 (±10,571,464,896,142,900) | 25,790,429,154,707,500 (±10,255,032,505,952,900) | 0.017 | 0.815 | 88.89% | 66.67% | 0.53–0.96 | 0.011 |
GLCM | Cluster Shade | 0.386 (±0.268) | 146,046,470,600.51 (±221,971,036,175.30) | 0.007 | 0.907 | 66.67% | 100% | 0.64–0.99 | <0.0001 |
Autocorrelation | 600,512,843,926.50 (±266,967,395,651.26) | 172,336,715,286.11 (±225,325,689,588.11) | 0.005 | 0.907 | 88.89% | 83.33% | 0.64–0.99 | <0.0001 | |
First order | Skewness | −41,087,393,947.19 (±92,868,722,144.65) | −266,130,994,643.65 (±242,387,476,528.67) | 0.012 | 0.889 | 88.89% | 83.33% | 0.62–0.99 | <0.0001 |
NGTDM | Strength | 0.099 (±0.065) | 12,828,807,550.54 (±38,486,422,650.55) | 0.049 | 0.815 | 55.56% | 100% | 0.53–0.96 | 0.007 |
Features (±SD) | Student’s t Test/Mann–Whitney U | ROC Curve Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
Responders | Non-Responders | p | AUC | Sensitivity | Specificity | 95%CI | p | ||
Shape | MeshVolume | 47,726,724,383.33 (±116826556826.61) | 13,076,118.00 (±30921508.47) | 0.012 | 0.889 | 66.67% | 100% | 0.62–0.99 | <0.0001 |
LeastAxisLength | 12,285,531,715,430,500 (±14137871167552600) | 5,973,056,305,063,620 (±249,77,695,721,154,400) | 0.036 | 0.833 | 77.78% | 100% | 0.55–0.97 | 0.0045 | |
SurfaceVolume | 0.014 (±0.05200651) | 0.1233 (±0.089998892) | 0.020 | 0.852 | 88.89% | 83.33% | 0.57–0.97 | 0.0021 | |
GLRLM | LongRunEmphasis | 2,579,499,151,841.67 (±3.283) | 149,429,893,302.00 (±1.43237) | 0.039 | 0.889 | 66.7% | 100% | 0.62–0.99 | <0.0001 |
GLSZM | LargeAreaLowGrayLevelEmphasis | 408,041,364,296.00 (±3.38877) | 36,590,288,676.44 (±1.9542) | 0.017 | 0.833 | 100% | 66.67% | 0.55–0.97 | 0.007 |
NGTDM | Contrast | 0.00000 (±0.00571308) | 0.01000 (±0.00986065) | 0.049 | 0.796 | 66.67% | 83.33% | 0.53–0.96 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbarino, G.M.; Zerunian, M.; Berardi, E.; Mainardi, F.; Pilozzi, E.; Polici, M.; Guido, G.; Rucci, C.; Polidori, T.; Tarallo, M.; et al. Perioperative Chemotherapy with FLOT Scheme in Resectable Gastric Adenocarcinoma: A Preliminary Correlation between TRG and Radiomics. Appl. Sci. 2021, 11, 9211. https://doi.org/10.3390/app11199211
Garbarino GM, Zerunian M, Berardi E, Mainardi F, Pilozzi E, Polici M, Guido G, Rucci C, Polidori T, Tarallo M, et al. Perioperative Chemotherapy with FLOT Scheme in Resectable Gastric Adenocarcinoma: A Preliminary Correlation between TRG and Radiomics. Applied Sciences. 2021; 11(19):9211. https://doi.org/10.3390/app11199211
Chicago/Turabian StyleGarbarino, Giovanni Maria, Marta Zerunian, Eva Berardi, Federico Mainardi, Emanuela Pilozzi, Michela Polici, Gisella Guido, Carlotta Rucci, Tiziano Polidori, Mariarita Tarallo, and et al. 2021. "Perioperative Chemotherapy with FLOT Scheme in Resectable Gastric Adenocarcinoma: A Preliminary Correlation between TRG and Radiomics" Applied Sciences 11, no. 19: 9211. https://doi.org/10.3390/app11199211
APA StyleGarbarino, G. M., Zerunian, M., Berardi, E., Mainardi, F., Pilozzi, E., Polici, M., Guido, G., Rucci, C., Polidori, T., Tarallo, M., Laracca, G. G., Iannicelli, E., Mercantini, P., Annibale, B., Laghi, A., & Caruso, D. (2021). Perioperative Chemotherapy with FLOT Scheme in Resectable Gastric Adenocarcinoma: A Preliminary Correlation between TRG and Radiomics. Applied Sciences, 11(19), 9211. https://doi.org/10.3390/app11199211