Artifact Reduction in Compressed Sensing Averaging Techniques for High-Resolution Magnetic Resonance Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. K-Space Acquisition and Reconstruction of CSA Methods
2.2. Random Sampling
2.3. MR Parameters for Data Acquisition
2.4. Evaluation of Ringing and Blurring Artifacts
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duyn, J.H.; van Gelderen, P.; Li, T.-Q.; de Zwart, J.A.; Koretsky, A.P.; Fukunaga, M. High-Field MRI of Brain Cortical Substructure Based on Signal Phase. Proc. Natl. Acad. Sci. USA 2007, 104, 11796–11801. [Google Scholar] [CrossRef] [Green Version]
- Maubon, A.J.; Ferru, J.-M.; Berger, V.; Soulage, M.C.; DeGraef, M.; Aubas, P.; Coupeau, P.; Dumont, E.; Rouanet, J.-P. Effect of Field Strength on MR Images: Comparison of the Same Subject at 0.5, 1.0, and 1.5 T. RadioGraphics 1999, 19, 1057–1067. [Google Scholar] [CrossRef]
- Krüger, G.; Kastrup, A.; Glover, G.H. Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging: Neuroimaging at 1.5 T and 3.0 T. Magn. Reson. Med. 2001, 45, 595–604. [Google Scholar] [CrossRef]
- Springer, E.; Dymerska, B.; Cardoso, P.L.; Robinson, S.D.; Weisstanner, C.; Wiest, R.; Schmitt, B.; Trattnig, S. Comparison of Routine Brain Imaging at 3 T and 7 T. Investig. Radiol. 2016, 51, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.D.; Fong, C.L.; Tzung, B.S.; Law, M.; Nayak, K.S. Clinical Image Quality Assessment of Accelerated Magnetic Resonance Neuroimaging Using Compressed Sensing. Investig. Radiol. 2013, 48, 638–645. [Google Scholar] [CrossRef]
- Gallagher, T.A.; Nemeth, A.J.; Hacein-Bey, L. An Introduction to the Fourier Transform: Relationship to MRI. Am. J. Roentgenol. 2008, 190, 1396–1405. [Google Scholar] [CrossRef] [Green Version]
- Havsteen, I.; Ohlhues, A.; Madsen, K.H.; Nybing, J.D.; Christensen, H.; Christensen, A. Are Movement Artifacts in Magnetic Resonance Imaging a Real Problem?—A Narrative Review. Front. Neurol. 2017, 8, 232. [Google Scholar] [CrossRef]
- Moore, J.; Drangova, M.; Wierzbicki, M.; Barron, J.; Peters, T. A High Resolution Dynamic Heart Model Based on Averaged MRI Data. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2003; Ellis, R.E., Peters, T.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2878, pp. 549–555. ISBN 978-3-540-20462-6. [Google Scholar]
- Plenge, E.; Poot, D.H.J.; Bernsen, M.; Kotek, G.; Houston, G.; Wielopolski, P.; van der Weerd, L.; Niessen, W.J.; Meijering, E. Super-Resolution Methods in MRI: Can They Improve the Trade-off between Resolution, Signal-to-Noise Ratio, and Acquisition Time? Magn. Reson. Med. 2012, 68, 1983–1993. [Google Scholar] [CrossRef]
- Pruessmann, K.P.; Weiger, M.; Scheidegger, M.B.; Boesiger, P. SENSE: Sensitivity Encoding for Fast MRI. Magn. Reson. Med. 1999, 42, 952–962. [Google Scholar] [CrossRef]
- Sui, Y.; Afacan, O.; Gholipour, A.; Warfield, S.K. Fast and High-Resolution Neonatal Brain MRI through Super-Resolution Reconstruction from Acquisitions with Variable Slice Selection Direction. Front. Neurosci. 2021, 15, 636268. [Google Scholar] [CrossRef]
- Lohmann, G.; Bohn, S.; Müller, K.; Trampel, R.; Turner, R. Image Restoration and Spatial Resolution in 7-Tesla Magnetic Resonance Imaging. Magn. Reson. Med. 2010, 64, 15–22. [Google Scholar] [CrossRef]
- Suh, C.H.; Jung, S.C.; Lee, H.B.; Cho, S.J. High-Resolution Magnetic Resonance Imaging Using Compressed Sensing for Intracranial and Extracranial Arteries: Comparison with Conventional Parallel Imaging. Korean J. Radiol. 2019, 20, 487. [Google Scholar] [CrossRef]
- Hernandez, D.; Kim, K.-N. A Review on the RF Coil Designs and Trends for Ultra High Field Magnetic Resonance Imaging. Investig. Magn. Reson. Imaging 2020, 24, 95. [Google Scholar] [CrossRef]
- Park, C.-R.; Kang, S.-H.; Lee, Y.-J. Feasibility of Total Variation Noise Reduction Algorithm According to Various MR-Based PET Images in a Simultaneous PET/MR System: A Phantom Study. Diagnostics 2021, 11, 319. [Google Scholar] [CrossRef]
- Holmes, C.J.; Hoge, R.; Collins, L.; Woods, R.; Toga, A.W.; Evans, A.C. Enhancement of MR Images Using Registration for Signal Averaging. J. Comput. Assist. Tomogr. 1998, 22, 324–333. [Google Scholar] [CrossRef]
- Eichner, C.; Cauley, S.F.; Cohen-Adad, J.; Möller, H.E.; Turner, R.; Setsompop, K.; Wald, L.L. Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast. NeuroImage 2015, 122, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed Sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef]
- Jung, H.; Sung, K.; Nayak, K.S.; Kim, E.Y.; Ye, J.C. K-t FOCUSS: A General Compressed Sensing Framework for High Resolution Dynamic MRI. Magn. Reson. Med. 2009, 61, 103–116. [Google Scholar] [CrossRef]
- Gamper, U.; Boesiger, P.; Kozerke, S. Compressed Sensing in Dynamic MRI. Magn. Reson. Med. 2008, 59, 365–373. [Google Scholar] [CrossRef]
- Kang, C.-K.; Kim, H.-K. Compressed-Sensing Technique Combined with Key-Hole Acquisitions for SNR Enhancement. Appl. Magn. Reson. 2016, 47, 823–834. [Google Scholar] [CrossRef]
- Lee, K.-J.; Park, C.-A.; Kang, D.; Son, Y.-D.; Kim, H.-K.; Lee, Y.-B.; Kang, C.-K. High-Resolution Imaging Using Keyhole-Based Compressed Sensing Averaging (CSAK) Technique. JMAG 2020, 25, 164–171. [Google Scholar] [CrossRef]
- Smith, S. Digital Signal Processing: A Practical Guide for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-08-047732-9. [Google Scholar]
- Fellner, C.; Müller, W.; Georgi, J.; Taubenreuther, U.; Fellner, F.A.; Kalender, W.A. A High-Resolution Phantom for MRI. Magn. Reson. Imaging 2001, 19, 899–904. [Google Scholar] [CrossRef]
- Mohapatra, S.M.; Turley, J.D.; Prince, J.R.; Blechinger, J.C.; Wilson, D.A. Transfer Function Measurement and Analysis for a Magnetic Resonance Imager: Technical Note: Transfer Function Measurement and Analysis. Med. Phys. 1991, 18, 1141–1144. [Google Scholar] [CrossRef]
- Wahid, A.; Shah, J.A.; Khan, A.U.; Ahmed, M.; Razali, H. Multi-Layer Basis Pursuit for Compressed Sensing MR Image Reconstruction. IEEE Access 2020, 8, 186222–186232. [Google Scholar] [CrossRef]
Undersampling Ratio | CSAM Acquisition | CSAKS Acquisition | CSAKC Acquisition | ||||||
S1 | S2 | S3 | S1 | S2 | S3 | S1 | S2 | S3 | |
25% | 193 | 193 | 193 | 291 | 116 | 116 | 291 | 116 | 116 |
35% | 268 | 268 | 268 | 448 | 116 | 116 | 448 | 116 | 116 |
45% | 346 | 346 | 346 | 579 | 116 | 116 | 579 | 116 | 116 |
Undersampling Ratio | CSAM Acquisition | CSAKS Acquisition | CSAKC Acquisition | ||||||
S1 | S2 | S3 | S1 | S2 | S3 | S1 | S2 | S3 | |
25% | 193 | 193 | 193 | 291 | 193 | 193 | 291 | 291 | 291 |
35% | 268 | 268 | 268 | 448 | 268 | 268 | 448 | 448 | 448 |
45% | 346 | 346 | 346 | 579 | 346 | 346 | 579 | 579 | 579 |
CS Technique | Undersampling Ratio | ||
---|---|---|---|
25% | 35% | 45% | |
CSAM | 06 m 04 s (579) | 08 m 24 s (804) | 10 m 48 s (1038) |
CSAK | 05 m 05 s (523) | 06 m 26 s (680) | 07 m 18 s (811) |
ROI | Undersampling Ratio | Mean (Signal) | STD (Noise) | SNR |
---|---|---|---|---|
WM | 25 | 78.44 | 7.54 | 10.41 |
35 | 78.75 | 8.04 | 9.80 | |
45 | 80.46 | 9.08 | 8.86 | |
Full (100) | 66.03 | 11.85 | 5.57 | |
GM | 25 | 73.05 | 7.54 | 9.69 |
35 | 75.17 | 8.04 | 9.35 | |
45 | 76.88 | 9.08 | 8.46 | |
Full (100) | 66.16 | 11.85 | 5.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, J.-M.; Kim, Y.-B.; Kang, C.-K. Artifact Reduction in Compressed Sensing Averaging Techniques for High-Resolution Magnetic Resonance Images. Appl. Sci. 2021, 11, 9802. https://doi.org/10.3390/app11219802
Shim J-M, Kim Y-B, Kang C-K. Artifact Reduction in Compressed Sensing Averaging Techniques for High-Resolution Magnetic Resonance Images. Applied Sciences. 2021; 11(21):9802. https://doi.org/10.3390/app11219802
Chicago/Turabian StyleShim, Jeong-Min, Young-Bo Kim, and Chang-Ki Kang. 2021. "Artifact Reduction in Compressed Sensing Averaging Techniques for High-Resolution Magnetic Resonance Images" Applied Sciences 11, no. 21: 9802. https://doi.org/10.3390/app11219802
APA StyleShim, J. -M., Kim, Y. -B., & Kang, C. -K. (2021). Artifact Reduction in Compressed Sensing Averaging Techniques for High-Resolution Magnetic Resonance Images. Applied Sciences, 11(21), 9802. https://doi.org/10.3390/app11219802