Aquaphotomics Reveals Subtle Differences between Natural Mineral, Processed and Aged Water Using Temperature Perturbation Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Samples
2.2. Methods
2.3. Multivariate Analysis
3. Results
3.1. HCA Discrimination of Waters Based on Conventionally Used Physico-Chemical Parameters (Ions Type and Concentration, pH and 17O-NMR)
3.2. HCA Discrimination Based on the NIR Spectra of Waters under Temperature Perturbation
3.3. Difference Spectra
3.4. PCA Analysis
3.5. Interclass Distance Study Reveals Different Temperature Dependence of NIR Spectra of Water
3.6. Aquaphotomics Unraveled Hidden Information in Water Spectra under Temperature Perturbation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gowen, A.A.; Tsenkova, R.; Bruen, M.; O’Donnell, C. Vibrational spectroscopy for analysis of water for human use and in aquatic ecosystems. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2546–2573. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [Google Scholar] [CrossRef]
- Segtnan, V.H.V.; Šašić, Š.; Isaksson, T.; Ozaki, Y.; Šašić, S.; Isaksson, T.; Ozaki, Y.; Sasic, S.; Isaksson, T.; Ozaki, Y. Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis. Anal. Chem. 2001, 73, 3153–3161. [Google Scholar] [CrossRef]
- Shao, X.; Cui, X.; Wang, M.; Cai, W. High order derivative to investigate the complexity of the near infrared spectra of aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 83–89. [Google Scholar] [CrossRef]
- Gowen, A.A.; Amigo, J.M.; Tsenkova, R. Characterisation of hydrogen bond perturbations in aqueous systems using aquaphotomics and multivariate curve resolution-alternating least squares. Anal. Chim. Acta 2013, 759, 8–20. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Cui, X.; Cai, W.; Shao, X. Three–level simultaneous component analysis for analyzing the near–infrared spectra of aqueous solutions under multiple perturbations. Talanta 2020, 217, 121036. [Google Scholar] [CrossRef]
- Shao, X.; Cui, X.; Yu, X.; Cai, W. Mutual factor analysis for quantitative analysis by temperature dependent near infrared spectra. Talanta 2018, 183, 142–148. [Google Scholar] [CrossRef]
- Cui, X.; Cai, W.; Shao, X. Glucose induced variation of water structure from temperature dependent near infrared spectra. RSC Adv. 2016, 6, 105729–105736. [Google Scholar] [CrossRef]
- Gowen, A.A.A.; Marini, F.; Tsuchisaka, Y.; De Luca, S.; Bevilacqua, M.; O’Donnell, C.; Downey, G.; Tsenkova, R.; O’Donnell, C.; Downey, G.; et al. On the feasibility of near infrared spectroscopy to detect contaminants in water using single salt solutions as model systems. Talanta 2015, 131, 609–618. [Google Scholar] [CrossRef]
- Kovacs, Z.; Bázár, G.; Oshima, M.; Shigeoka, S.; Tanaka, M.; Furukawa, A.; Nagai, A.; Osawa, M.; Itakura, Y.; Tsenkova, R. Water spectral pattern as holistic marker for water quality monitoring. Talanta 2015, 147, 598–608. [Google Scholar] [CrossRef]
- Muncan, J.; Matovic, V.; Nikolic, S.; Askovic, J.; Tsenkova, R. Aquaphotomics approach for monitoring different steps of purification process in water treatment systems. Talanta 2020, 206, 120253. [Google Scholar] [CrossRef]
- Tsenkova, R. Visible-near infrared perturbation spectroscopy: Water in action seen as a source of information. In Proceedings of the 12th International Conference on Near-infrared Spectroscopy (Auckland), Auckland, New Zealand, 9–15 April 2005; pp. 607–612. [Google Scholar]
- Tsenkova, R.; Munćan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef]
- Liu, X.W.; Cui, X.Y.; Yu, X.M.; Cai, W.S.; Shao, X.G. Understanding the thermal stability of human serum proteins with the related near-infrared spectral variables selected by Monte Carlo-uninformative variable elimination. Chin. Chem. Lett. 2017, 28, 1447–1452. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, X.; Cai, W.; Shao, X. Understanding the role of water in the aggregation of poly (N, N-dimethylaminoethyl methacrylate) in aqueous solution using temperature-dependent near-infrared spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 5780–5789. [Google Scholar] [CrossRef]
- Munćan, J.S.; Matija, L.; Simić-Krstić, J.B.; Nijemčević, S.S.; Koruga, D.L. Discrimination of mineral waters using near-infrared spectroscopy and aquaphotomics. Hem. Ind. 2014, 68, 257–264. [Google Scholar] [CrossRef]
- Rinnan, Å.; Nørgaard, L.; van den Berg, F.; Thygesen, J.; Bro, R.; Engelsen, S.B. Data Pre-Processing. In Infrared Spectroscopy for Food Quality Analysis and Control; Academic Press: Newyork, NY, USA, 2009; ISBN 9780123741363. [Google Scholar]
- Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Infometrix Inc. Soft Independent Modeling of Class Analogy. In Pirouette Multivariate Data Analyis Software—User’s Manual; Infometrix, Inc.: Bothell, WA, USA, 2014; pp. 14–31. [Google Scholar]
- Brereton, R.G. Multivariate Pattern Recognition in Chemometrics: Illustrated by Case Studies; Elsevier Science: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1951, 36, 1627–1639. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Water in the biological and aqueous world scrutinised with invisible light. Spectrosc. Eur. 2010, 22, 6–10. [Google Scholar]
- Šašić, S.; Segtnan, V.H.; Ozaki, Y. Self-modeling curve resolution study of temperature-dependent near-infrared spectra of water and the investigation of water structure. J. Phys. Chem. A 2002, 106, 760–766. [Google Scholar] [CrossRef]
- Renati, P.; Kovacs, Z.; De Ninno, A.; Tsenkova, R. Temperature dependence analysis of the NIR spectra of liquid water confirms the existence of two phases, one of which is in a coherent state. J. Mol. Liq. 2019, 292, 111449. [Google Scholar] [CrossRef]
- Kojić, D.; Tsenkova, R.; Tomobe, K.; Yasuoka, K.; Yasui, M. Water confined in the local field of ions. ChemPhysChem 2014, 15, 4077–4086. [Google Scholar] [CrossRef]
- van de Kraats, E.B.; Munćan, J.; Tsenkova, R.N. Aquaphotomics—Origin, concept, applications and future perspectives. Substantia 2019, 3, 13–28. [Google Scholar] [CrossRef]
- Schmidt, S.J. Water mobility in foods. In Water Activity in Foods—Fundamentals and Applications (Institute of Food Technologist), 1st ed.; Barbosa-Canovas, G.V., Fontana, A., Jr., Schmidt, S., Labuza, T.P., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2007; pp. 47–108. [Google Scholar]
Type of Water | Na+ (mg/L) | K+ (mg/L) | Mg2+ (mg/L) | Ca2+ (mg/L) | pH at 25 °C (±SD) | 17O-NMR (MHz) |
---|---|---|---|---|---|---|
Pure water (Q) | 0 | 0 | 0 | 0 | 6.86 (0.16) | 76.7 |
Processed Q (PQ) | 6.3 | 0.3 | 0.0 | 0.3 | 9.81 (0.18) | 53.2 |
Changbai (Cha) | 8.5 | 4.2 | 9.4 | 12.5 | 7.82 (0.10) | 96.5 |
Processed Changbai (Cha2014) | 45.0 | 1.8 | 7.4 | 0.2 | 8.33 (0.02) | 82.5 |
Processed Changbai (Cha2016) | 37.7 | 0.8 | 4.8 | 2.0 | 8.72 (0.04) | 72.0 |
Ganten * (Gan) | 8.0 | 5.25 | 5.05 | 8.5 | 6.29 (0.08) | 140.6 |
Tibet * (Tib) | 47.5 | 9.0 | 10.5 | 65.0 | 8.24 (0.04) | 65.6 |
Kunlun * (Kun) | 22.5 | 2.0 | 45.0 | 45.0 | 8.19 (0.04) | 120.1 |
Tap water (Tap) | 29.6 | 5.0 | 21.7 | 34.5 | 8.00 (0.06) | 90.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, Y.; Munćan, J.; Tsenkova, R.; Kojić, D.; Yasui, M.; Fan, J.-Y.; Han, J.-Y. Aquaphotomics Reveals Subtle Differences between Natural Mineral, Processed and Aged Water Using Temperature Perturbation Near-Infrared Spectroscopy. Appl. Sci. 2021, 11, 9337. https://doi.org/10.3390/app11199337
Kato Y, Munćan J, Tsenkova R, Kojić D, Yasui M, Fan J-Y, Han J-Y. Aquaphotomics Reveals Subtle Differences between Natural Mineral, Processed and Aged Water Using Temperature Perturbation Near-Infrared Spectroscopy. Applied Sciences. 2021; 11(19):9337. https://doi.org/10.3390/app11199337
Chicago/Turabian StyleKato, Yasuhiro, Jelena Munćan, Roumiana Tsenkova, Dušan Kojić, Masato Yasui, Jing-Yu Fan, and Jing-Yan Han. 2021. "Aquaphotomics Reveals Subtle Differences between Natural Mineral, Processed and Aged Water Using Temperature Perturbation Near-Infrared Spectroscopy" Applied Sciences 11, no. 19: 9337. https://doi.org/10.3390/app11199337
APA StyleKato, Y., Munćan, J., Tsenkova, R., Kojić, D., Yasui, M., Fan, J. -Y., & Han, J. -Y. (2021). Aquaphotomics Reveals Subtle Differences between Natural Mineral, Processed and Aged Water Using Temperature Perturbation Near-Infrared Spectroscopy. Applied Sciences, 11(19), 9337. https://doi.org/10.3390/app11199337