Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Microorganisms
2.2. Preparation of Chitosan Solution
2.3. Preparation of Plant Extract and Synthesis of Silver Nanoparticles
2.4. Synthesis of Silver Chitosan Nanoparticles
2.5. UV–Vis Spectroscopy
2.6. Dynamic Light Scattering and Zeta Potential
2.7. FT-IR Analysis
2.8. Transmission Electron Microscopy Analysis
2.9. Cytotoxicity Assay
2.10. Evaluation of Antibacterial Activity
2.11. Statistical Analysis
3. Results
3.1. Characterization and Identification of CH-AgNPs
3.2. FT-IR Analysis of Biosynthesized CH-AgNPs
3.3. Transmission Electron Microscopy (TEM) Analysis of Biosynthesized CH-AgNPs
3.4. Evaluation of Cytotoxic Activity
3.5. Evaluation of Antimicrobial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmieder, R.; Edwards, R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol. 2019, 7, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, T.; Sati, G.C.; Kondasinghe, N.; Pirrone, M.G.; Kato, T.; Waduge, P.; Kumar, H.S.; Sanchon, A.C.; Dobosz-Bartoszek, M.; Shcherbakov, D.; et al. Design, multigram synthesis, and in vitro and in vivo evaluation of propylamycin: A semisynthetic 4, 5-deoxystreptamine class aminoglycoside for the treatment of drug-resistant Enterobacteriaceae and other Gram-negative pathogens. J. Am. Chem. Soc. 2019, 141, 5051–5061. [Google Scholar] [CrossRef]
- Yoshida, A.; Sasaki, H.; Toyama, T.; Araki, M.; Fujioka, J.; Tsukiyama, K.; Hamada, N.; Yoshino, F. Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Santella, B.; Folliero, V.; Pirofalo, G.M.; Serretiello, E.; Zannella, C.; Moccia, G.; Santoro, E.; Sanna, G.; Motta, O.; De Caro, F. Sepsis-A retrospective cohort study of bloodstream infections. Antibiotics 2020, 9, 851. [Google Scholar] [CrossRef]
- Ravishankar Rai, V.; Jamuna Bai, A. Nanoparticles and their potential application as antimicrobials, Science against Microbial Pathogens: Communicating Current Research and Technological Advances. In Microbiology Series; Méndez-Vilas, A., Ed.; Formatex: Budapest, Hungary, 2011; Volume 3, pp. 197–209. [Google Scholar]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Mahendra, R.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef] [Green Version]
- Zannella, C.; Shinde, S.; Vitiello, M.; Falanga, A.; Galdiero, E.; Fahmi, A.; Santella, B.; Nucci, L.; Gasparro, R.; Galdiero, M.; et al. Antibacterial activity of indolicidin-coated silver nanoparticles in oral disease. Appl. Sci. 2020, 10, 1837. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.M.; Elsayed, M.A.; Al-Balakocy, N.G.; Hassan, M.M.; Elshafei, A.M. Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. J. Genet. Eng. Biotechnol. 2019, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rozykulyyeva, L.; Astuti, S.D.; Zaidan, A.H.; Pradhana, A.A.S.; Puspita, P.S. Antibacterial activities of green synthesized silver nanoparticles from Punica granatum peel extract. AIP Conf. Proc. 2020, 2314, 060012. [Google Scholar]
- Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.; Kuan, C.H.; Chieng, C.W.; Nishibuchi, M.; Radu, S. In Vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Front. Microbiol. 2018, 16, 1555. [Google Scholar] [CrossRef]
- Rai, M.K.; Deshmukh, S.; Ingle, A.; Gade, A. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef]
- Rout, Y.; Behera, S.; Ojha, A.K.; Nayak, P. Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J. Microbiol. Antimicrob. 2012, 4, 103–109. [Google Scholar] [CrossRef]
- Pironti, C.; Dell’Annunziata, F.; Giugliano, R.; Folliero, V.; Galdiero, M.; Ricciardi, M.; Motta, O.; Proto, A.; Franci, G. Comparative analysis of peracetic acid (PAA) and permaleic acid (PMA) in disinfection processes. Sci. Total Environ. 2021, 797, 149206. [Google Scholar] [CrossRef]
- Thakkar, K.; Mhatre, S.; Parikh, R. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257–262. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, G.; Kaur, P.; Bajaj, R.; Rawat, M. A review on green synthesis and characterization of silver nanoparticles and their applications: A green nanoworld. World J. Pharm. Pharm. Sci. 2016, 7, 730–762. [Google Scholar]
- Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. 2015, 53, 298–309. [Google Scholar] [CrossRef]
- Potara, M.; Jakab, E.; Damert, A.; Popescu, O.; Canpean, V.; Astilean, S. Synergistic antibacterial activity of chitosan–silver nanocomposites on Staphylococcus aureus. Nanotechnology 2011, 22, 135101. [Google Scholar] [CrossRef]
- Ambrogi, V.; Donnadio, A.; Pietrella, D.; Latterini, L.; Alunni Proietti, F.; Marmottini, F.; Padeletti, G.; Kaciulis, S.; Giovagnoli, S.; Ricci, M. Chitosan films containing mesoporous SBA-15 supported silver nanoparticles for wound dressing. J. Mater. Chem. 2014, 2, 6054–6063. [Google Scholar] [CrossRef]
- Luna-Hernández, E.; Cruz-Soto, M.; Padilla-Vaca, F.; Mauricio-Sánchez, R.A.; Ramirez-Wong, D.; Munoz, R.; Granados-López, L.; Ovalle-Flores, L.R.; Menchaca-Arredondo, J.L.; Hernández-Rangel, A.; et al. Combined antibacterial/tissue regeneration response in thermal burns promoted by functional chitosan/silver nanocomposites. Int. J. Biol. Macromol. 2017, 105, 1241–1249. [Google Scholar] [CrossRef]
- Monda, V.; Valenzano, A.; Moscatelli, F.; Messina, A.; Piombino, L.; Zannella, C.; Viggiano, E.; Monda, G.; De Luca, V.; Chieffi, S.; et al. Modifications of activity of autonomic nervous system, and resting energy expenditure in women using hormone-replacement therapy. Biol. Med. 2016, 8, 5. [Google Scholar]
- Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biol. Technol. 2006, 41, 164–171. [Google Scholar] [CrossRef]
- Chien, P.J.; Sheu, F.; Lin, H.-R. Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chem. 2007, 100, 1160–1164. [Google Scholar] [CrossRef]
- Ishihara, M.; Nguyen, V.Q.; Mori, Y.; Nakamura, S.; Hattori, H. Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities. Int. J. Mol. Sci. 2015, 16, 13973–13988. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Liu, Y. Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials 2013, 6, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Irudayaraj, J. Characterization of semisolid fats and edible oils by Fourier transform infrared photoacoustic spectroscopy. J. Am. Oil Chem. Soc. 2000, 77, 291–295. [Google Scholar] [CrossRef]
- Nabedryk, E.; Breton, J. Polarized Fourier transform infrared (FTIR) difference spectroscopy of the M412 intermediate in the bacteriorhodopsin photocycle. FEBS Lett. 1986, 202, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Yin, H.; Wu, Z.; Caiwen, Q.I.; Tian, H.; Zhang, W.; Hu, Z.; Feng, L. Characterization of coals and coal ashes with high content using combined second-derivative infrared spectroscopy and Raman spectroscopy. Crystals 2019, 9, 513. [Google Scholar] [CrossRef] [Green Version]
- Ongen, A.; Ozcan, H.K.; Ozbas, E.E.; Balkaya, N. Adsorption of Astrazon Blue FGRL onto sepiolite from aqueous solutions. Desalination Water Treat. 2012, 40, 129–136. [Google Scholar] [CrossRef]
- Bollino, F.; Armenia, E.; Tranquillo, E. Zirconia/hydroxyapatite composites synthesized via Sol-Gel: Influence of hydroxyapatite content and heating on their biological properties. Materials 2017, 10, 757. [Google Scholar] [CrossRef] [Green Version]
- Ben-Refael, A.; Benisti, I.; Paz, Y. Transient photoinduced phenomena in graphitic carbon nitride as measured at nanoseconds resolution by step-scan FTIR. Catal. Today 2020, 340, 97–105. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, Q.-L.; Li, H.; Weng, Y.-X.; Wang, W.-C.; Qiu, X.-G. Infrared spectroscopic discrimination between the loop and α-helices and determination of the loop diffusion kinetics by temperature-jump time-resolved infrared spectroscopy for cytochrome c. Biophys. J. 2007, 93, 2756–2766. [Google Scholar] [CrossRef] [Green Version]
- Service, R.J.; Hillier, W.; Debus, R.J. Evidence from FTIR difference spectroscopy of an extensive network of hydrogen bonds near the oxygen-evolving Mn4Ca cluster of photosystem II involving D1-Glu65, D2-Glu312, and D1-Glu329. Biochemistry 2010, 49, 6655–6669. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Shi, Y.; Yi, S.L. Aging Process of Puer Black Tea Studied by FTIR Spectroscopy Combined with Curve-Fitting Analysis. Guang Pu Xue Yu Guang Pu Fen Xi 2015, 35, 1860–1863. [Google Scholar]
- Dakal, T.; Kumar, A.; Majumdar, R.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef] [Green Version]
- Lekamge, S.; Miranda, A.F.; Abraham, A.; Li, V.; Shukla, R.; Bansal, V.; Nugegoda, D. The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata, and Paratya australiensis. Front. Environ. Sci. 2018, 6, 152. [Google Scholar] [CrossRef]
- De Sousa Victor, D.; da Cunha Santos, A.M.; de Sousa, B.V.; de Araújo Neves, G.; Navarro de Lima Santana, L.; Rodrigues Menezes, R. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials 2020, 13, 4995. [Google Scholar] [CrossRef]
- Nate, Z.; Moloto, M.J.; Mubiayi, P.K.; Sibiya, P.N. Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Adv. 2018, 3, 2505–2517. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Capanoglu, E.; Boyacioglu, D.; de Vos, R.C.H.; Hall, R.D.; Beekwilder, J. Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). J. Berry Res. 2011, 1, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Yeap, S.; Che, H.; Low, S. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Bélteky, P.; Rónavári, A.; Igaz, N.; Szerencses, B.; Tóth, I.Y.; Pfeiffer, I.; Kiricsi, M.; Kónya, Z. Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. Int. J. Nanomed. 2019, 14, 667. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Zhao, Y.; Rasheed, T.; Ahmed, I.; Hassan, S.T.S.; Nawaz, M.Z.; Iqbal, H.M.N. Biogenic nanoparticle‒chitosan conjugates with antimicrobial, antibiofilm, and anticancer potentialities: Development and characterization. Int. J. Environ. Res. Public Health 2019, 16, 598. [Google Scholar] [CrossRef] [Green Version]
- Cinteza, L.O.; Scomoroscenco, C.; Voicu, S.N.; Nistor, C.L.; Nitu, S.G.; Trica, B.; Jecu, M.L.; Pectu, C. Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils. Nanomaterials 2018, 8, 826. [Google Scholar] [CrossRef] [Green Version]
- Kalaivani, R.; Maruthupandy, M.; Muneeswaran, T. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front. Lab. Med. 2018, 2, 30–35. [Google Scholar] [CrossRef]
- Rathod, D.; Golinska, P.; Wypij, M.; Dahm, H.; Rai, M. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med. Microbiol. Immunol. 2016, 205, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Składanowski, M.; Golinska, P.; Rudnicka, K.; Dahm, H.; Rai, M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med. Microbiol. Immunol. 2016, 205, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Dell’Annunziata, F.; Ilisso, C.P.; Dell’Aversana, C.; Greco, G.; Coppola, A.; Martora, F.; Dal Piaz, F.; Donadio, G.; Falanga, A.; Galdiero, M.; et al. Outer Membrane Vesicles derived from Klebsiella pneumoniae influence the miRNA expression profile in human bronchial epithelial BEAS-2B cells. Microorganisms 2020, 8, 1985. [Google Scholar] [CrossRef]
- Vallapa, N.; Wiarachai, O.; Thongchul, N.; Pan, J.; Tangpasuthadol, V.; Kiatkamjornwong, S.; Hoven, V.P. Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization. Carbohydr. Polym. 2011, 83, 868–875. [Google Scholar] [CrossRef]
- Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 2009, 344, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raafat, D.; Sahl, H. Chitosan and its antimicrobial potential—A critical literature survey. Microb Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotic Resistance Profile of the ATCC Bacterial Strains | ||
---|---|---|
Staphylococcus aureus ATCC 6538 | ||
ANTIBIOTICS | MIC (mg/L) | INTERPRETATION |
Fusidic acid | ≤0.5 | S |
Daptomycin | 0.25 | S |
Erythromycin | ≤0.25 | S |
Fosfomycin | ≤8 | S |
Gentamicin | ≤0.5 | S |
Linezolid | 2 | S |
Levofloxacin | ≤0.12 | S |
Oxacillin | ≤0.25 | S |
Teicoplanin | ≤0.5 | S |
Tetracycline | ≤1 | S |
Tigecycline | ≤0.12 | S |
Trimethoprim/sulfamethoxazole | ≤10 | S |
Vancomycin | ≤0.5 | S |
Penicillin | ≤0.03 | S |
Rifampicin | ≤0.03 | S |
Enterococcus faecalis ATCC 29212 | ||
Ampicillin | ≤2 | S |
Gentamicin/syn | ≤500 | S |
Imipenem | ≤1 | S |
Linezolid | 2 | S |
Teicoplanin | ≤0.5 | S |
Tigecycline | ≤0.12 | S |
Vancomycin | 2 | S |
Cefuroxime | ≤64 | R |
Escherichia coli ATCC 11229 | ||
Amikacin | ≤2 | S |
Amoxicillin/clavulanate | ≤2 | S |
Ampicillin | ≤8 | S |
Cefepime | ≤1 | S |
Cefotaxime | ≤1 | S |
Ceftazidime | ≤1 | S |
Cefuroxime | 4 | S |
Ciprofloxacin | ≤0.25 | S |
Ertapenem | ≤0.5 | S |
Fosfomycin | ≤16 | S |
Gentamicin | ≤1 | S |
Imipenem | ≤0.25 | S |
Levofloxacin | ≤0.5 | S |
Meropenem | ≤0.25 | S |
Piperacillin | 8 | S |
Piperacillin/tazobactam | ≤4 | S |
Tobramycin | ≤1 | S |
Trimethoprim/sulfamethoxazole | ≤20 | S |
Tigecycline | ≤0.5 | S |
Klebsiella pneumoniae ATCC 10031 | ||
Ciprofloxacin | ≤0.25 | S |
Fosfomycin | ≤16 | S |
Ampicillin | ≤8 | S |
Gentamicin | ≤1 | S |
Trimethoprim/sulfamethoxazole | ≤20 | S |
Amikacin | ≤2 | S |
Amoxicillin/clavulanate | ≤2 | S |
Cefepime | ≤1 | S |
Cefotaxime | ≤1 | S |
Ceftazidime | ≤1 | S |
Ertapenem | ≤0.5 | S |
Imipenem | 0.5 | S |
Meropenem | ≤0.25 | S |
Piperacillin/tazobactam | ≤4 | S |
Colistin | ≤0.5 | S |
Antibiotic Resistance Profile of the Clinical Isolated Bacteria | ||
---|---|---|
Staphylococcus aureus MS | ||
Fusidic acid | ≤0.5 | S |
Daptomycin | 0.25 | S |
Erythromycin | ≤0.25 | S |
Fosfomycin | ≤8 | S |
Gentamicin | ≤0.5 | S |
Linezolid | 2 | S |
Levofloxacin | ≤0.12 | S |
Oxacillin | ≤0.25 | S |
Teicoplanin | ≤0.5 | S |
Tetracycline | ≤1 | S |
Tigecycline | ≤0.12 | S |
Trimethoprim/sulfamethoxazole | ≤10 | S |
Vancomycin | ≤0.5 | S |
Penicillin | ≤0.03 | S |
Fusidic acid | ≤0.5 | S |
Daptomycin | 0.25 | S |
Erythromycin | ≤0.25 | S |
Staphylococcus aureus MDR | ||
Fusidic acid | ≤0.5 | S |
Daptomycin | 0.25 | S |
Erythromycin | >4 | R |
Fosfomycin | >64 | R |
Gentamicin | >8 | R |
Linezolid | 2 | S |
Levofloxacin | ≥8 | R |
Oxacillin | >2 | R |
Teicoplanin | ≤0.5 | S |
Tetracycline | ≤1 | S |
Tigecycline | ≤0.12 | S |
Trimethoprim/sulfamethoxazole | 20 | S |
Vancomycin | ≤0.5 | S |
Penicillin | >0.25 | R |
Rifampicin | >2 | R |
Enterococcus faecalis MS | ||
Ampicillin | ≤2 | S |
Gentamicin/syn | ≤500 | S |
Imipenem | ≤2 | S |
Linezolid | 2 | S |
Teicoplanin | ≤0.5 | S |
Tigecycline | ≤0.25 | S |
Vancomycin | 2 | S |
Cefuroxime | ≤64 | R |
Enterococcus faecalis MDR | ||
Ampicillin | >8 | R |
Gentamicin/syn | ≥500 | R |
Imipenem | >8 | R |
Linezolid | 2 | S |
Teicoplanin | ≤0.5 | S |
Tigecycline | >0.25 | R |
Vancomycin | 2 | S |
Cefuroxime | ≤64 | R |
Escherichia coli MS | ||
Amikacin | ≤2 | S |
Amoxicillin/clavulanate | ≤2 | S |
Ampicillin | ≤8 | S |
Cefepime | ≤1 | S |
Cefotaxime | ≤1 | S |
Ceftazidime | ≤1 | S |
Cefuroxime | 4 | S |
Ciprofloxacin | ≤0.25 | S |
Ertapenem | ≤0.5 | S |
Fosfomycin | ≤16 | S |
Gentamicin | ≤1 | S |
Imipenem | ≤0.25 | S |
Levofloxacin | ≤0.5 | S |
Meropenem | ≤0.25 | S |
Piperacillin | 8 | S |
Piperacillin/tazobactam | ≤4 | S |
Tobramycin | ≤1 | S |
Trimethoprim/sulfamethoxazole | ≤20 | S |
Tigecycline | ≤0.5 | S |
Escherichia coli MDR | ||
Amikacin | >16 | R |
Amoxicillin/clavulanate | >32/2 | R |
Ampicillin | >8 | R |
Cefepime | >8 | R |
Cefotaxime | >4 | R |
Ceftazidime | >8 | R |
Cefuroxime | >8 | R |
Ciprofloxacin | >1 | R |
Ertapenem | ≤0.25 | S |
Fosfomycin | ≤16 | S |
Gentamicin | >4 | R |
Imipenem | ≤0.25 | R |
Levofloxacin | >2 | R |
Meropenem | ≤0.125 | S |
Piperacillin | >16 | R |
Piperacillin/tazobactam | >16/4 | R |
Tobramycin | >4 | R |
Trimethoprim/sulfamethoxazole | ≤1/19 | S |
Tigecycline | 1 | R |
Klebsiella pneumoniae MS | ||
Ciprofloxacin | ≤0.25 | S |
Fosfomycin | ≤16 | S |
Gentamicin | ≤1 | S |
Trimethoprim/sulfamethoxazole | ≤20 | S |
Amikacin | ≤2 | S |
Ampicillin | ≤8 | S |
Amoxicillin/clavulanate | ≤2 | S |
Cefepime | ≤1 | S |
Cefotaxime | ≤1 | S |
Ceftazidime | ≤1 | S |
Ertapenem | ≤0.5 | S |
Imipenem | ≤0.25 | S |
Meropenem | ≤0.25 | S |
Piperacillin/tazobactam | ≤4 | S |
Colistin | ≤0.5 | S |
Klebsiella pneumoniae MDR | ||
Ciprofloxacin | ≥4 | R |
Fosfomycin | 64 | S |
Gentamicin | ≤1 | S |
Trimethoprim/sulfamethoxazole | ≥320 | R |
Amikacin | ≥64 | R |
Amoxicillin/clavulanate | ≥32 | R |
Ampicillin | >8 | R |
Cefepime | ≥64 | R |
Cefotaxime | ≥64 | R |
Ceftazidime | ≥64 | R |
Ertapenem | ≥8 | R |
Imipenem | ≥16 | R |
Meropenem | ≥16 | R |
Piperacillin/tazobactam | ≥128 | R |
Colistin | ≤0.5 | S |
Sr No. | FT-IR Peak (cm−1) at AgNPs | Functional Group | References |
---|---|---|---|
1 | 3280 | vibrations of amino groups (N–H) | Liu et al. 2013 [26] |
2 | 2856 | sym –CH3 stretching vibration | Yang et al. 2000 [27] |
3 | 1527 | C=N stretching vibration | Nabedryk et al. 1986 [28] |
4 | 1295 | C–H deformation vibration | Yin et al. 2019 [29] |
5 | 1017 | C–O stretching vibration | Ongen et al. 2012 [30] |
6 | 823 | C–C skeletal vibration | Bollino et al. 2017 [31] |
Sr No. | FT-IR Peak (cm−1) at CH-AgNPs | Functional Group | References |
---|---|---|---|
1 | 3178 | amide group N–H stretch | Ben-Refael 2020 [32] |
2 | 1653 | C=C stretching vibration | Ye et al. 2007 [33] |
3 | 1509 | broad amide II band | Service et al. 2010 [34] |
5 | 1278 | C–H sym deformation vibration | Li et al. 2015 [35] |
6 | 1042 | C–C skeleton vibration | Liu et al. 2013 [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinde, S.; Folliero, V.; Chianese, A.; Zannella, C.; De Filippis, A.; Rosati, L.; Prisco, M.; Falanga, A.; Mali, A.; Galdiero, M.; et al. Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria. Appl. Sci. 2021, 11, 9340. https://doi.org/10.3390/app11199340
Shinde S, Folliero V, Chianese A, Zannella C, De Filippis A, Rosati L, Prisco M, Falanga A, Mali A, Galdiero M, et al. Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria. Applied Sciences. 2021; 11(19):9340. https://doi.org/10.3390/app11199340
Chicago/Turabian StyleShinde, Surbhi, Veronica Folliero, Annalisa Chianese, Carla Zannella, Anna De Filippis, Luigi Rosati, Marina Prisco, Annarita Falanga, Avinash Mali, Marilena Galdiero, and et al. 2021. "Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria" Applied Sciences 11, no. 19: 9340. https://doi.org/10.3390/app11199340
APA StyleShinde, S., Folliero, V., Chianese, A., Zannella, C., De Filippis, A., Rosati, L., Prisco, M., Falanga, A., Mali, A., Galdiero, M., Galdiero, M., & Franci, G. (2021). Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria. Applied Sciences, 11(19), 9340. https://doi.org/10.3390/app11199340