Comparative Study on the Role of Berberine and Berberis lycium Royle Roots Extract against the Biochemical Markers and Cyclin D1 Expression in HCC Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Extraction of Plant
2.3. Methods
2.3.1. Drug Preparation
2.3.2. Blood Sample Processing
2.3.3. Histology of Tissues
2.3.4. Histopathology and Immunohistochemistry
2.4. Statistical Analysis
3. Results and Discussion
3.1. Establishment and Amelioration of Hepatocarcinoma
3.2. Histopathological Changes in the Liver
3.3. Animal Burden during the Study
3.4. Immunohistochemistry Analysis of CD1 Expression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Serag, H.B. Epidemiology of hepatocellular carcinoma. In The Liver: Biology and Pathobiology; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 758–772. [Google Scholar]
- Tricker, A.; Preussmann, R. Carcinogenic N-nitrosamines in the diet: Occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res. Genet. Toxicol. 1991, 259, 277–289. [Google Scholar] [CrossRef]
- Schmähl, D.; Preussmann, R.; Hamperl, H. Leberkrebs-erzeugende Wirkung von Diäthylnitrosamin nach oraler Gabe bei Ratten. Naturwissenschaften 1960, 47, 89. [Google Scholar] [CrossRef]
- Sen, N.; Smith, D.C.; Schwinghamer, L.; Marleau, J. Diethylnitrosamine and other N-nitrosamines in foods. J. Assoc. Off. Anal. Chem. 1969, 52, 47–52. [Google Scholar] [CrossRef]
- Tolba, R.; Kraus, T.; Liedtke, C.; Schwarz, M.; Weiskirchen, R. Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab. Anim. 2015, 49 (Suppl. 1), 59–69. [Google Scholar] [CrossRef] [Green Version]
- Verna, L.; Whysner, J.; Williams, G.M. N-nitrosodiethylamine mechanistic data and risk assessment: Bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol. Ther. 1996, 71, 57–81. [Google Scholar] [CrossRef]
- Rajewsky, M.; Dauber, W.; Frankenberg, H. Liver carcinogenesis by diethylnitrosamine in the rat. Science 1966, 152, 83–85. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, J.-J.; Wang, X.; Bu, X.-Y.; Lou, Y.-Q.; Zhang, G.-L. Effect of berberine on hepatocyte proliferation, inducible nitric oxide synthase expression, cytochrome P450 2E1 and 1A2 activities in diethylnitrosamine-and phenobarbital-treated rats. Biomed. Pharmacother. 2008, 62, 567–572. [Google Scholar] [CrossRef]
- Mustafa, K.; Song, Y. Functional Foods for Cancer: Bioactive Compounds and Cancer Year, 1st ed.; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017; ISBN 10 1975953177/13 978-1975953171. [Google Scholar]
- Mustafa, K.; Mohamed, H.; Shah, A.M.; Yu, S.; Akhlaq, M.; Xiao, H.; Li, S.; Naz, T.; Nosheen, S.; Bai, X. In Vitro Anticancer Potential of Berberis lycium Royle Extracts against Human Hepatocarcinoma (HepG2) Cells. BioMed Res. Int. 2020, 2020, 8256809. [Google Scholar] [CrossRef]
- Ali, H.; Uddin, S.; Jalal, S. Chemistry and biological activities of Berberis lycium Royle. J. Biol. Act. Prod. Nat. 2015, 5, 295–312. [Google Scholar]
- Shabbir, A.; Shahzad, M.; Arfat, Y.; Ali, L.; Aziz, R.S.; Murtaza, G.; Waqar, S.A. Berberis lycium Royle: A review of its traditional uses, phytochemistry and pharmacology. Afr. J. Pharm. Pharmacol. 2012, 6, 2346–2353. [Google Scholar] [CrossRef]
- Garhwal, S. Analysis of berberine content using HPTLC fingerprinting of root and bark of three Himalayan Berberis species. Asian J. Biotechnol. 2010, 2, 239–245. [Google Scholar]
- Rafiq, S.; Ajmal, K.; Afzal, A. Isoniazid induced hepatotoxicity and its amelioration with ethanolic extract of stem bark of Berberis lycium Royale in mice. Int. J. Basic Clin. Pharmacol. 2017, 6, 1865. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Xie, C.; Wei, Y.; Qu, Y.; Liang, H.; Zhang, Y.; Xu, T.; Qian, X.; Qiu, H.; Deng, H. Antitumor Effects of Berberine on Gliomas via Inactivation of Caspase-1-Mediated IL-1β and IL-18 Release. Front. Oncol. 2019, 9, 364. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Tong, N.; Chen, Y.; Luo, Y. Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biol. Pharm. Bull. 2012, 35, 796–800. [Google Scholar] [CrossRef] [Green Version]
- Kiren, M.; Iqra, A.; Tahira, N.; Abu Bakr Ahmad, F.; Xueyuan, B.; Yuanda, S. Bioactive Functional Foods for Cardiovascular Diseases. Am. J. Biochem. Biotechnol. 2020, 16, 354–369. [Google Scholar]
- Iskova, A.; Kubatka, P.; Samec, M.; Zubor, P.; Mlyncek, M.; Bielik, T.; Samuel, S.M.; Zulli, A.; Kwon, T.K.; Büsselberg, D. Dietary phytochemicals targeting cancer stem cells. Molecules 2019, 24, 899. [Google Scholar] [CrossRef] [Green Version]
- Samec, M.; Liskova, A.; Kubatka, P.; Uramova, S.; Zubor, P.; Samuel, S.M.; Zulli, A.; Pec, M.; Bielik, T.; Biringer, K. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J. Cancer Res. Clin. Oncol. 2019, 145, 1665–1679. [Google Scholar] [CrossRef]
- Jasek, K.; Kubatka, P.; Samec, M.; Liskova, A.; Smejkal, K.; Vybohova, D.; Bugos, O.; Biskupska-Bodova, K.; Bielik, T.; Zubor, P. DNA methylation status in cancer disease: Modulations by plant-derived natural compounds and dietary interventions. Biomolecules 2019, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, K.; Yu, S.; Zhang, W.; Mohamed, H.; Naz, T.; Xiao, H.; Liu, Y.; Nazir, Y.; Fazili, A.B.A.; Nosheen, S. Screening, characterization, and in vitro-ROS dependent cytotoxic potential of extract from Ficus carica against hepatocellular (HepG2) carcinoma cells. S. Afr. J. Bot. 2021, 138, 217–226. [Google Scholar] [CrossRef]
- Khan, M.; Giessrigl, B.; Vonach, C.; Madlener, S.; Prinz, S.; Herbaceck, I.; Holzl, C.; Bauer, S.; Viola, K.; Mikulits, W.; et al. Berberine and a Berberis lycium extract inactivate Cdc25A and induce alpha-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis. Mutat. Res. 2010, 683, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wuu, J.; Savas, L.; Patwardhan, N.; Khan, A. The role of cell cycle regulatory proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis. Hum. Pathol. 1998, 29, 1304–1309. [Google Scholar] [CrossRef]
- Hsi, E.D.; Zukerberg, L.R.; Yang, W.; Arnold, A. Cyclin D1/PRAD1 expression in parathyroid adenomas: An immunohistochemical study. J. Clin. Endocrinol. Metab. 1996, 81, 1736–1739. [Google Scholar]
- Ogino, S.; Nosho, K.; Irahara, N.; Kure, S.; Shima, K.; Baba, Y.; Toyoda, S.; Chen, L.; Giovannucci, E.L.; Meyerhardt, J.A. A cohort study of cyclin D1 expression and prognosis in 602 colon cancer cases. Clin. Cancer Res. 2009, 15, 4431–4438. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.; Papanikolaou, A. Cyclin D1 in breast cancer pathogenesis. J. Clin. Oncol. 2005, 23, 4215–4224. [Google Scholar] [CrossRef]
- Sauter, E.R.; Yeo, U.-C.; von Stemm, A.; Zhu, W.; Litwin, S.; Tichansky, D.S.; Pistritto, G.; Nesbit, M.; Pinkel, D.; Herlyn, M. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 2002, 62, 3200–3206. [Google Scholar] [PubMed]
- Yatabe, Y.; Suzuki, R.; Tobinai, K.; Matsuno, Y.; Ichinohasama, R.; Okamoto, M.; Yamaguchi, M.; Tamaru, J.-I.; Uike, N.; Hashimoto, Y. Significance of cyclin D1 overexpression for the diagnosis of mantle cell lymphoma: A clinicopathologic comparison of cyclin D1-positive MCL and cyclin D1-negative MCL-like B-cell lymphoma. Blood J. Am. Soc. Hematol. 2000, 95, 2253–2261. [Google Scholar]
- Fu, M.; Wang, C.; Li, Z.; Sakamaki, T.; Pestell, R.G. Minireview: Cyclin D1: Normal and abnormal functions. Endocrinology 2004, 145, 5439–5447. [Google Scholar] [CrossRef]
- Ozturk, M. Genetic Aspects of Hepatocellular Carcinogenesis; Seminars in Liver Disease; Thieme Medical Publishers, Inc.: New York, NY, USA, 1999; pp. 235–242. [Google Scholar]
- Dapito, D.H.; Mencin, A.; Gwak, G.-Y.; Pradere, J.-P.; Jang, M.-K.; Mederacke, I.; Caviglia, J.M.; Khiabanian, H.; Adeyemi, A.; Bataller, R. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012, 21, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Fang, L.; Liao, J.; Li, L.; Yao, W.; Xiong, Z.; Zhou, X. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo. PLoS ONE 2017, 12, e0172838. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.S.; Yoo, J.-S.H.; Ishizaki, H.; Hong, J. Cytochrome P450IIE1: Roles in nitrosamine metabolism and mechanisms of regulation. Drug Metab. Rev. 1990, 22, 147–159. [Google Scholar] [CrossRef]
- Kew, M. Alpha-fetoprotein in primary liver cancer and other diseases. Gut 1974, 15, 814. [Google Scholar] [CrossRef] [Green Version]
- Yuen, M.-F.; Lai, C.-L. Serological markers of liver cancer. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 91–99. [Google Scholar] [CrossRef]
- Kheir, M.M.; Wang, Y.; Hua, L.; Hu, J.; Li, L.; Lei, F.; Du, L. Acute toxicity of berberine and its correlation with the blood concentration in mice. Food Chem. Toxicol. 2010, 48, 1105–1110. [Google Scholar] [CrossRef]
- Song, L.; Luo, Y.; Wang, X.; Almutairi, M.M.; Pan, H.; Li, W.; Liu, Y.; Wang, Q.; Hong, M. Exploring the active mechanism of berberine against HCC by systematic pharmacology and experimental validation. Mol. Med. Rep. 2019, 20, 4654–4664. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Cai, C.; Wu, X.; Fan, X.; Huang, W.; Zhou, J.; Wu, Q.; Huang, Y.; Zhao, W.; Zhang, F. An insight into the molecular mechanism of berberine towards multiple cancer types through systems pharmacology. Front. Pharmacol. 2019, 10, 857. [Google Scholar] [CrossRef] [Green Version]
- Diehl, J.A. Cycling to cancer with cyclin D1. Cancer Biol. Ther. 2002, 1, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadi, P.; Sarvarian, P.; Gholipour, E.; Asenjan, K.S.; Aghebati-Maleki, L.; Motavalli, R.; Hojjat-Farsangi, M.; Yousefi, M. Berberine: A novel therapeutic strategy for cancer. IUBMB Life 2020, 72, 2065–2079. [Google Scholar] [CrossRef]
- Masaki, T.; Shiratori, Y.; Rengifo, W.; Igarashi, K.; Yamagata, M.; Kurokohchi, K.; Uchida, N.; Miyauchi, Y.; Yoshiji, H.; Watanabe, S.; et al. Cyclins and cyclin-dependent kinases: Comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology 2003, 37, 534–543. [Google Scholar] [CrossRef]
Groups | Treatment | BUN (nmol/L) | ALP(U/L) | ALT(U/L) | AST(U/L) | AFP Level (pg/mL) |
---|---|---|---|---|---|---|
1 | No | 3.05 ± 0.61 | 75.33 ± 1.53 | 48 ± 7.02 | 116 ± 13.05 | 341.7 ± 20.60 |
2 | DEN | 6.04 ± 0.05 # | 191.73 ± 3.41 # | 165.67 ± 7.77 # | 334 ± 47.01 # | 421.33 ± 30.4 # |
3 | BLE (60) | 4.43 ± 0.31 ** | 128.33 ± 17.56 * | 97 ± 7.64 ** | 289 ± 34 | 388 ± 9.53 |
4 | BLE (120) | 3.13 ± 6.20 ** | 83.3 ± 15.3 ** | 59 ± 28 * | 183 ± 51.3 * | 349 ± 23.8 * |
5 | Berberine (60) | 5.47 ± 0.50 | 87 ± 21.3 ** | 53.7 ± 31.3 * | 266 ± 37.9 | 353 ± 8.39 * |
6 | Berberine (120) | 3.53 ± 0.45 ** | 73.22 ± 22.34 ** | 45.5 ± 5.89 ** | 114.3 ± 15.3 ** | 338.3 ± 54.6 |
No. of Days of DEN Treatment | Behavior/Symptoms of Dead Mice | Weight of Dead Mice (g) | No. of Mice Died |
---|---|---|---|
0 | Normal | 18–22 | 0 |
30 | Loss of appetite | 34–42 | 0 |
35 | Sudden weight loss | 28–33 | 1 |
40 | Systemic inflammation | 27–32 | 2 |
45 | Red eyes | 26–28 | 4 |
50 | Fast breathing and shivering | 24–30 | 5 |
60 | Died | 20–24 | 8 |
Type of Treatment | Dose (mg/kg) | IHC Score |
---|---|---|
HCC control | 6.48 ± 0.37 | |
BLE | 60 | 5.43 ± 0.208 * |
120 | 4.78 ± 0.195 * | |
Berberine | 60 | 4.32 ± 0.399 * |
120 | 3.33 ± 0.21 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, K.; Yu, S.; Mohamed, H.; Qi, T.; Xiao, H.; ciali, S.; Yang, W.; Naz, T.; Nosheen, S.; Bai, X.; et al. Comparative Study on the Role of Berberine and Berberis lycium Royle Roots Extract against the Biochemical Markers and Cyclin D1 Expression in HCC Animal Model. Appl. Sci. 2021, 11, 11810. https://doi.org/10.3390/app112411810
Mustafa K, Yu S, Mohamed H, Qi T, Xiao H, ciali S, Yang W, Naz T, Nosheen S, Bai X, et al. Comparative Study on the Role of Berberine and Berberis lycium Royle Roots Extract against the Biochemical Markers and Cyclin D1 Expression in HCC Animal Model. Applied Sciences. 2021; 11(24):11810. https://doi.org/10.3390/app112411810
Chicago/Turabian StyleMustafa, Kiren, Shaoxuan Yu, Hassan Mohamed, Tang Qi, Haifang Xiao, Sun ciali, Wu Yang, Tahira Naz, Shaista Nosheen, Xueyuan Bai, and et al. 2021. "Comparative Study on the Role of Berberine and Berberis lycium Royle Roots Extract against the Biochemical Markers and Cyclin D1 Expression in HCC Animal Model" Applied Sciences 11, no. 24: 11810. https://doi.org/10.3390/app112411810
APA StyleMustafa, K., Yu, S., Mohamed, H., Qi, T., Xiao, H., ciali, S., Yang, W., Naz, T., Nosheen, S., Bai, X., & Song, Y. (2021). Comparative Study on the Role of Berberine and Berberis lycium Royle Roots Extract against the Biochemical Markers and Cyclin D1 Expression in HCC Animal Model. Applied Sciences, 11(24), 11810. https://doi.org/10.3390/app112411810