Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ripening Stages Classification Based on Color CIELab Chromaticity
2.2. Wavelets
2.3. Experimental Setup for Determining Frequency Response Functions
3. Results and Discussion
3.1. Time–Frequency Analysis of Velocity Measurements
3.2. Mechanical Impedance Analysis
3.3. Wavelets Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atteridge, A.; Elise, R. Indirect Effects of Adaptation: Pathways for Vulnerability Redistribution in the Colombian Coffee Sector; Stockholm Environment Institute: Stockholm, Sweden, 2013. [Google Scholar]
- Ortegón Chicuasuque, M.J. Perfil Sociodemográfico de los Recolectores de café en Colombia; Universidad del Rosario: Bogotá, Colombia, 2019. [Google Scholar]
- Moreira, R.M.G.; Teixeira, M.M.; Santos, F.L.; Fernandes, H.C.; Cecon, P.R. Preliminary design of a coffee harvester. Semin. Ciênc. Agrár. 2016, 37, 2933–2946. [Google Scholar] [CrossRef] [Green Version]
- Zapata, J.; Londoño, V.; Naranjo, M.; Osorio, J.; Lopez, C.; Quintero, M. Characterization of aroma compounds present in an industrial recovery concentrate of coffee flavour. CyTA-J. Food 2018, 16, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Duque, H.; Dussán, C. Productividad de la mano de obra en la cosecha de café en cuatro municipios de la región cafetera central de Caldas. Cenicafé 2005, 55, 246–258. [Google Scholar]
- Ferguson, L.; Rosa, U.; Castro-Garcia, S.; Lee, S.; Guinard, J.; Burns, J. Krueger Mechanical Harvesting of California Table and Oil Olives. Adv. Hortic. Sci. 2010, 24, 53–63. [Google Scholar]
- Yarborough, D.E.; Hergeri, G.B. Mechanical harvesting of berry crops. Hortic. Rev. 2010, 16, 255–282. [Google Scholar]
- Olander, S. Swedish experience of mechanical harvesting of strawberries. In Proceedings of the II International Strawberry Symposium 348, Beltsville, MD, USA, 13–18 September 1992. [Google Scholar]
- Brando, C.H. Harvesting and green coffee processing. In Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders and Researchers; Wintgens, J.N., Ed.; Wiley-VCH: Weinheim, Germany, 2009; pp. 610–723. [Google Scholar]
- Tascón, C.E.O. Cosecha del café con vibradores portátiles del tallo. Rev. Fac. Nac. Agron. Medellín 2005, 58, 2697–2708. [Google Scholar]
- Oliveros Tascón, C.E.; Ramírez Gómez, C.A.; Acosta Acosta, R.; Álvarez Mejía, F. Equipo portátil para asistir la cosecha manual de café. Rev. Fac. Nac. Agron. Medellín 2005, 58, 3003–3013. [Google Scholar]
- Ferraz, S.; da Silva, F.M.; de Carvalho Alves, M.; de Lima Bueno, R.; da Costa, P.A.N. Geostatistical analysis of fruit yield and detachment force in coffee. Precis. Agric. 2012, 13, 76–89. [Google Scholar] [CrossRef]
- Jesusimo, D.J. Classification of immature and mature coffee beans using rgb 460 values and machine learning algorithms. Int. J. Emerg. Trends Eng. Res. 2020, 8, 3016–3022. [Google Scholar]
- Tinoco, H.A.; Ocampo, D.A.; Peña, F.M.; Sanz-Uribe, J.R. Finite element modal analysis of the fruit-peduncle of Coffea arabica L. var. Colombia estimating its geometrical and mechanical properties. Comput. Electron. Agric. 2014, 108, 17–27. [Google Scholar] [CrossRef]
- Tinoco, H.A.; Peña, F.M. Mechanical and geometrical characterization of fruits Coffea arabica L. var. Colombia to simulate the ripening process by finite element analysis. Eng. Agric. Environ. Food 2019, 12, 367–377. [Google Scholar]
- Tinoco, H.A. Modeling elastic and geometric properties of Coffea arabica L. var. Colombia fruits by an experimental-numerical approach. Int. J. Fruit Sci. 2017, 17, 159–174. [Google Scholar] [CrossRef]
- Li, P.; Lee, S.H.; Hsu, H.Y. Review on fruit harvesting method for potential use of automatic fruit harvesting systems. Procedia Eng. 2011, 23, 351–366. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Ma, S.; Xing, H.; Wang, F.; Xing, H.; Bai, J. An Experimental Study on a Specialized Catching Device for Mechanical Harvesting of Apples. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019; p. 1. [Google Scholar]
- Sola-Guirado, R.R.; Castro-García, S.; Blanco-Roldán, G.L.; Jiménez-Jiménez, F.; Castillo-Ruiz, F.J.; Gil-Ribes, J.A. Traditional olive tree response to oil olive harvesting technologies. Biosyst. Eng. 2014, 118, 186–193. [Google Scholar] [CrossRef]
- Torregrosa, A.; Ortí, E.; Martín, B.; Gil, J.; Ortiz, C. Mechanical harvesting of oranges and mandarins in Spain. Biosyst. Eng. 2009, 104, 18–24. [Google Scholar] [CrossRef]
- Tanigaki, K.; Fujiura, T.; Akase, A.; Imagawa, J. Cherry-harvesting robot. Comput. Electron. Agric. 2008, 63, 65–72. [Google Scholar] [CrossRef]
- Coelho, A.L.D.F.; Santos, F.L.; Pinto, F.D.A.D.C.; Queiroz, D.M.D. Detachment efficiency of fruits from coffee plants subjected to mechanical vibrations. Pesqui. Agropecu. Tropical. 2015, 45, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Velloso, N.S.; Magalhães, R.R.; Santos, F.L.; Santos, A.A.R. Modal properties of coffee plants via numerical simulation. Comput. Electron. Agric. 2020, 175, 105552. [Google Scholar]
- Júnior, L.D.G.F.; da Silva, F.M.; Ferreira, D.D.; de Souza, C.E.P.; Pinto, A.W.M.; de Melo Borges, F.E. Dynamic behavior of coffee tree branches during mechanical harvest. Comput. Electron. Agric. 2020, 173, 105415. [Google Scholar] [CrossRef]
- Oliveira, E.D.; Silva, F.M.D.; Salvador, N.; Figueiredo, C.A. Influência da vibração das hastes e da velocidade de deslocamento da colhedora no processo de colheita mecanizada do café. Eng. Agríc. 2007, 27, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.L.; Queiroz, D.M.D.; Pinto, F.D.A.D.C.; Resende, R.C.D. Efeito da frequência e amplitude de vibração sobre a derriça de frutos de café. Rev. Bras. Eng. Agríc. Ambient. 2010; 14, 426–431. [Google Scholar]
- Santos, F.L.; Queiroz, D.M.D.; Valente, D.S.M.; Coelho, A.L.D.F. Simulation of the dynamic behavior of the coffee fruit-stem system using finite element method. Acta Sci. Technol. 2015, 37, 11–17. [Google Scholar] [CrossRef]
- Villibor, G.P.; Santos, F.L.; de Queiroz, D.M.; Junior, J.K.K.; de Carvalho Pinto, F.D.A. Dynamic behavior of coffee fruit-stem system using modeling of flexible bodies. Comput. Electron. Agric. 2019, 166, 105009. [Google Scholar] [CrossRef]
- Cardona, C.I.; Tinoco, H.A.; Pereira, D.A.; Buitrago-Osorio, J.; Perdomo-Hurtado, L.; Hurtado-Hernandez, M.; Lopez-Guzman, J. Vibration Shapes Identification Applying Eulerian Video Magnification on Coffee Fruits to Study the Selective Harvesting. In Proceedings of the 2020 19th International Conference on Mechatronics-Mechatronika (ME), Prague, Czech Republic, 2–4 December 2020. [Google Scholar]
- Castro-Garcia, S.; Blanco-Roldán, G.L.; Ferguson, L.; González-Sánchez, E.J.; Gil-Ribes, J.A. Frequency response of late-season ‘Valencia’orange to selective harvesting by vibration for juice industry. Biosyst. Eng. 2017, 155, 77–83. [Google Scholar] [CrossRef]
- Nenadic, Z.; Burdick, J.W. Spike detection using the continuous wavelet transform. IEEE Trans. Biomed. Eng. 2004, 52, 74–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Fattah, H.M.; Shackel, K.A.; Slaughter, D.C. Methodology for determining Almond Shaker Displacement and Frequency. Appl. Eng. Agric. 2003, 19, 141–144. [Google Scholar]
- Ghobber, S. Some results on wavelet scalograms. Int. J. Wavelets Multiresolut. Inf. Process. 2017, 15, 1750019. [Google Scholar] [CrossRef]
- Rincon-Jimenez, A.; Tinoco, H.A.; Buitrago-Osorio, J.; Ocampo, O.; Berrio, L.V.; Rodriguez-Sotelo, J.L.; Arizmendi, C. Ripeness stage characterization of coffee fruits (coffea arabica L. var. Castillo) applying chromaticity maps obtained from digital images. Mater. Today Proc. 2021, 44, 1271–1278. [Google Scholar] [CrossRef]
- Al-Badour, F.; Sunar, M.; Cheded, L. Vibration analysis of rotating machinery using time–frequency analysis and wavelet techniques. Mech. Syst. Signal Process. 2011, 25, 2083–2101. [Google Scholar] [CrossRef]
- Kim, H.; Melhem, H. Damage detection of structures by wavelet analysis. Eng. Struct. 2004, 26, 347–362. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Li, L.; Cai, H.; Jiang, Q. Adaptive synchrosqueezing transform with a time-varying parameter for non-stationary signal separation. Appl. Comput. Harmon. Anal. 2020, 49, 1075–1106. [Google Scholar] [CrossRef] [Green Version]
- Meignen, S.; Oberlin, T.; McLaughlin, S. A New Algorithm for Multicomponent Signals Analysis Based on SynchroSqueezing: With an Application to Signal Sampling and Denoising. IEEE Trans. Signal Process. 2012, 60, 5787–5798. [Google Scholar] [CrossRef]
- Lee, H.K.; Choi, Y.S. Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface. Entropy 2019, 21, 1199. [Google Scholar] [CrossRef] [Green Version]
- Kaur, N.; Goyal, S.; Anand, K.; Sahu, G.K. A cost-effective approach for assessment of pre-stressing force in bridges using piezoelectric transducers. Measurement 2021, 168, 108324. [Google Scholar] [CrossRef]
- Fu, Z.F.; He, J. Modal Analysis; Butterworth-Heinemann: Waltham, MA, USA, 2001. [Google Scholar]
Ripening Stage | Parameter | ||||
---|---|---|---|---|---|
Unripe (UR) | −11.83 | 28.70 | 13.83 | 6.28 | 1.55 |
Semi-ripe (SMR) | 10.35 | 35.20 | 19.06 | 14.33 | 2.45 |
Ripe (RP) | 31.00 | 17.21 | 16.26 | 9.17 | 1.646 |
Item | Φ1 [mm] | Φ2 [mm] | Φ3 [mm] | Mass [g] | ||
---|---|---|---|---|---|---|
UR1 | −13.97 | 24.75 | 13.60 | 11.4 | 17.40 | 1.48 |
UR2 | −12.83 | 27.96 | 13.00 | 11.82 | 16.14 | 1.35 |
SMR1 | 8.24 | 44.92 | 13.00 | 11.50 | 16.24 | 1.70 |
SMR2 | 3.03 | 51.12 | 12.90 | 11.10 | 15.60 | 1.63 |
RP1 | 39.66 | 14.34 | 13.80 | 12.40 | 15.70 | 1.87 |
RP2 | 34.41 | 17.17 | 13.64 | 12.30 | 15.20 | 1.95 |
Ripening Stage | Interest Peaks from 10 to 100 [Hz] | Interest Peaks from 100 to 1000 [Hz] | ||
---|---|---|---|---|
P1 | P2 | P1 | P2 | |
UR1 | 23.34 | 25.86 | 774 | 766.06 |
UR2 | 24.02 | 25.43 | 767.9 | 769.03 |
SMR1 | 28.63 | 31.32 | 802.98 | 826.74 |
SMR2 | 39.25 | 31.3 | 746.23 | 787.25 |
RP1 | 40.5 | 42.82 | 762.43 | 690 |
RP2 | 36.23 | 44.95 | 713.28 | 694.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardona, C.I.; Tinoco, H.A.; Perdomo-Hurtado, L.; López-Guzmán, J.; Pereira, D.A. Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques. Appl. Sci. 2021, 11, 9346. https://doi.org/10.3390/app11199346
Cardona CI, Tinoco HA, Perdomo-Hurtado L, López-Guzmán J, Pereira DA. Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques. Applied Sciences. 2021; 11(19):9346. https://doi.org/10.3390/app11199346
Chicago/Turabian StyleCardona, Carlos I., Hector A. Tinoco, Luis Perdomo-Hurtado, Juliana López-Guzmán, and Daniel A. Pereira. 2021. "Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques" Applied Sciences 11, no. 19: 9346. https://doi.org/10.3390/app11199346
APA StyleCardona, C. I., Tinoco, H. A., Perdomo-Hurtado, L., López-Guzmán, J., & Pereira, D. A. (2021). Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques. Applied Sciences, 11(19), 9346. https://doi.org/10.3390/app11199346