Design and Manufacture of Composite Landing Gear for a Light Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Design of Landing Gear
3. Static Structure Analysis of Landing Gear
4. Manufacture of Landing Gear
5. Experiment Setup and Strain Measurement
5.1. Material Test Stand
5.2. Strain Measured by NI9237
5.3. Measurement Error
6. Results and Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Outay, F.; Mengash, H.A.; Adnan, M. Applications of unmanned aerial vehicle (UAV) inroad safety, traffic and highway infrastructure management: Recent advances and challenges. Transp. Res. Part A Policy Pract. 2020, 141, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperative agricultural operations of aerial and ground unmanned vehicles. IEEE Int. Workshop Metrol. Agric. For. 2020, 224–229. [Google Scholar] [CrossRef]
- Mohamed, N.; Al-Jaroodi, J.; Jawhar, I.; Idries, A.; Mohammed, F. Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. Chang. 2020, 153, 119293. [Google Scholar] [CrossRef]
- Sudhakar, S.; Vijayakumar, V.; Kumar, C.S.; Priya, V.; Ravi, L.; Subramaniyaswamy, V. Unmanned aerial vehicle (UAV) based forest fire detection and monitoring for reducing false alarms in forest-fires. Comput. Commun. 2020, 149, 1–16. [Google Scholar] [CrossRef]
- Chung, D.D.L. Mechanical properties. In Composite Materials: Science and Applications, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 49–61. [Google Scholar]
- Anand, K.V.; Neeraj, K.P.; Rajesh, N.; Prateek. Challenge and advantage of materials in design and fabrication of composite UAV. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 455, p. 012005. [Google Scholar]
- ElFaham, M.M.; Mostafa, A.M.; Nasr, G.M. Unmanned aerial vehicle (UAV) manufacturing materials: Synthesis, spectroscopic characterization and dynamic mechanical analysis (DMA). J. Mol. Struct. 2020, 1201, 127211. [Google Scholar] [CrossRef]
- Thuis, B.G.S.J. The Development of Composite Landing Gear Components for Aerospace Applications. In Proceedings of the 63rd Annual Conference of Society of Allied Weight Engineers, Newport Beach, CA, USA, 17–19 May 2004; National Aerospace Laboratory NLR: Amsterdam, The Netherlands, 2004. NLR-TP-2004-141. [Google Scholar]
- Park, Y.; Nguyen, K.H.; Kweon, J.; Choi, J.; Han, J.S. Structural analysis of a composite target-drone. Int. J. Aeronaut. Space Sci. 2011, 12, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Kshitij, S. Composite skid landing gear design feasibility. J. Am. Helicopter Soc. 2009, 54, 4. [Google Scholar] [CrossRef]
- Pitatzis, N.; Savaidis, G.; Panagiotou, P.; Yakinthos, K. Design and FE calculations of a lightweight civil unmanned aerial vehicle. In Proceedings of the 58th ILMENAU Scientific Colloquium, Technische Universität Ilmenau, Ilmenau, Germany, 8–12 September 2014. [Google Scholar]
- Thompson, D.J.; Feys, J.; Filewich, M.D.; Abdel-Magid, S.; Dalli, D.; Goto, F. The design and construction of a blended wing body UAV. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Airoldi, A.; Bettini, P.; Boiocchi, M.; Sala, G. Composite elements for biomimetic aerospace structures with progressive shape variation capabilities. Adv. Technol. Innov. 2016, 1, 13–15. [Google Scholar]
- Ciobanu, I.; Drăguș, L.; Țigleanu, L.; Frunză, C.; Bălăuță, D.; Olaru, S. Manufacturing of a landing gear using composite materials for an aerial target. J. Phys. Conf. Ser. 2019, 1–10. [Google Scholar] [CrossRef]
- Parmar, J.; Acharya, V.; Challa, D.J. Slection and analysis of the landing gear for unmanned aerial vehicle for SAE aero design series. Int. J. Mech. Eng. Technol. IJMET 2015, 6, 10–18. [Google Scholar]
GN | NN | x | y | z | GN | NN | x | y | z |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | −150 | 0 | 0 | 1 | 17 | 10 | 89.61 | 0 |
1 | 2 | −140 | 12.63 | 0 | 1 | 18 | 20 | 88.42 | 0 |
1 | 3 | −130 | 23.29 | 0 | 1 | 19 | 30 | 86.45 | 0 |
1 | 4 | −120 | 33.16 | 0 | 1 | 20 | 40 | 83.68 | 0 |
1 | 5 | −110 | 42.24 | 0 | 1 | 21 | 50 | 80.13 | 0 |
1 | 6 | −100 | 50.53 | 0 | 1 | 22 | 60 | 75.79 | 0 |
1 | 7 | −90 | 58.03 | 0 | 1 | 23 | 70 | 70.66 | 0 |
1 | 8 | −80 | 64.74 | 0 | 1 | 24 | 80 | 64.74 | 0 |
1 | 9 | −70 | 70.66 | 0 | 1 | 25 | 90 | 58.03 | 0 |
1 | 10 | −60 | 75.79 | 0 | 1 | 26 | 100 | 50.53 | 0 |
1 | 11 | −50 | 80.13 | 0 | 1 | 27 | 110 | 42.24 | 0 |
1 | 12 | −40 | 83.68 | 0 | 1 | 28 | 120 | 33.16 | 0 |
1 | 13 | −30 | 86.45 | 0 | 1 | 29 | 130 | 23.29 | 0 |
1 | 14 | −20 | 88.42 | 0 | 1 | 30 | 140 | 12.63 | 0 |
1 | 15 | −10 | 89.61 | 0 | 1 | 31 | 150 | 0 | 0 |
1 | 16 | 0 | 90 | 0 |
CFRP Layers | Factor of Safety | Displacement | Weight (g) | Weight Reduction | ||
[0]8 | 341.71 | 1.90 | −3.9806 | 28 | ||
[0]10 | 218.51 | 2.97 | −2.0535 | 37 | 25.2% | |
[0]12 | 151.57 | 4.29 | −1.1980 | 42 | 39.3% |
Node | Element | Displacement | Meshed Landing Gear | ||
---|---|---|---|---|---|
43,215 | 40,629 | 157.86 | −1.250 | ||
64,558 | 57,008 | 151.57 | −1.198 | ||
240,699 | 21,720 | 151.96 | −1.198 |
CFRP Layers Design | Displacement | ||
---|---|---|---|
[0]12 | 151.57 | −1.198 | |
[0/90]6S | 229.41 | −1.820 | |
[0/90/45/−45/90/0]S | 290.22 | −2.273 |
Force 150N Component (x, y, z) | CFRP Layers Design | Displacement | Max. Principal Strain | Min. Principal Strain | |
---|---|---|---|---|---|
(−112.5, −75, −65) | [0]12 | −1.868 | |||
[0/90]6S | −3.829 | ||||
[0/90/45/−45/90/0]S | −4.745 |
(RMSE) | ||
---|---|---|
First measurement | (1.91%) | |
Second measurement | ||
Third measurement |
CFRP Landing Gear | [0]12 (3D model) | [0]12 (ACP) | [0/90]2S | [0/90/45/−45/90/0]S |
---|---|---|---|---|
Simulation | ||||
Experiment | ||||
Error | 2.76% | 4.12% | 2.21% | 3.35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.-C.; Chin, P.-C.; Sun, Y.-P.; Wang, M.-R. Design and Manufacture of Composite Landing Gear for a Light Unmanned Aerial Vehicle. Appl. Sci. 2021, 11, 509. https://doi.org/10.3390/app11020509
Liang Y-C, Chin P-C, Sun Y-P, Wang M-R. Design and Manufacture of Composite Landing Gear for a Light Unmanned Aerial Vehicle. Applied Sciences. 2021; 11(2):509. https://doi.org/10.3390/app11020509
Chicago/Turabian StyleLiang, Yen-Chu, Pei-Chieh Chin, Yun-Ping Sun, and Muh-Rong Wang. 2021. "Design and Manufacture of Composite Landing Gear for a Light Unmanned Aerial Vehicle" Applied Sciences 11, no. 2: 509. https://doi.org/10.3390/app11020509
APA StyleLiang, Y. -C., Chin, P. -C., Sun, Y. -P., & Wang, M. -R. (2021). Design and Manufacture of Composite Landing Gear for a Light Unmanned Aerial Vehicle. Applied Sciences, 11(2), 509. https://doi.org/10.3390/app11020509