Effect of Capillary Number on the Residual Saturation of Colloidal Dispersions Stabilized by a Zwitterionic Surfactant
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Colloidal Dispersions
2.3. Evaluation of Emulsification
2.4. Core Flooding Experiments
3. Results and Discussion
3.1. Dispersion Properties of Silica NPs at the Oil-Water Interface
3.2. Plugging of Porous Rock by Aggregates of Colloidal Dispersions
3.3. Effect of Flow Rate on Oil Production with Injection of Colloidal Dispersions
3.4. Effect of Oil Viscosity on Oil Production with Injection of Colloidal Dispersions
3.5. Changes in Residual Oil Saturation after Adsorption of a Zwitterionic Surfactant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ju, B.; Fan, T. Experimental study and mathematical model of nanoparticle transport in porous media. Powder Technol. 2009, 192, 195–202. [Google Scholar] [CrossRef]
- Metin, C.O.; Bonnecaze, R.; Nguyen, Q. The viscosity of silica nanoparticle dispersions in permeable media. SPE Reserv. Eval. Eng. 2013, 16, 327–332. [Google Scholar] [CrossRef]
- Maghzi, A.; Kharrat, R.; Mohebbi, A.; Ghazanfari, M.H. The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel 2014, 123, 123–132. [Google Scholar] [CrossRef]
- Zhang, H.; Nikolov, A.; Wasan, D. Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy Fuels 2014, 28, 3002–3009. [Google Scholar] [CrossRef]
- Roustaei, A.; Bagherzadeh, H. Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs. J. Pet. Explor. Prod. Technol. 2015, 5, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; He, Y.; Li, P.; Li, S.; Zhang, T.; Rodriguez-Pin, E.; Du, S.; Wang, C.; Cheng, S.; Bielawski, C.W. Flow enhancement of water based nanoparticle dispersion through microscale sedimentary rocks. Sci. Rep. 2015, 5, 8702–8709. [Google Scholar] [CrossRef] [Green Version]
- Wyss, H.M.; Blair, D.L.; Morris, J.F.; Stone, H.A.; Weitz, D.A. Mechanism for clogging of microchannels. Phys. Rev. E 2006, 74, 061402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Murphy, M.J.; Yu, H.; Bagaria, H.G.; Yoon, K.Y.; Nielson, B.M.; Bielawski, C.W.; Johnston, K.P.; Huh, C.; Bryant, S.L. Investigation of nanoparticle adsorption during transport in porous media. SPE J. 2015, 20, 667–677. [Google Scholar] [CrossRef]
- Hendraningrat, L.; Li, S.; Torsæter, O. A coreflood investigation of nanofluid enhanced oil recovery. J. Pet. Sci. Eng. 2013, 111, 128–138. [Google Scholar] [CrossRef]
- Lu, T.; Li, Z.; Zhou, Y.; Zhang, C. Enhanced oil recovery of low-permeability cores by SiO2 nanofluid. Energy Fuels 2017, 31, 5612–5621. [Google Scholar] [CrossRef]
- Cheraghian, G.; Kiani, S.; Nassar, N.N.; Alexander, S.; Barron, A.R. Silica nanoparticle enhancement in the efficiency of surfactant flooding of heavy oil in a glass micromodel. Ind. Eng. Chem. Res. 2017, 56, 8528–8534. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dai, C.; Zhou, H.; Wang, X.; Lv, W.; Zhao, M. Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery. Energy Fuels 2018, 32, 287–293. [Google Scholar] [CrossRef]
- Ali, J.A.; Kolo, K.; Manshad, A.K.; Stephen, K.D. Low-salinity polymeric nanofluid-enhanced oil recovery using green polymer-coated ZnO/SiO2 nanocomposites in the upper Qamchuqa formation in Kurdistan region, Iraq. Energy Fuels 2019, 33, 927–937. [Google Scholar] [CrossRef]
- Binks, B.P.; Rodrigues, J.A. Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation. Langmuir 2007, 23, 7436–7439. [Google Scholar] [CrossRef]
- Binks, B.P.; Kirkland, M.; Rodrigues, J.A. Origin of stabilization of aqueous foams in nanoparticle−surfactant mixtures. Soft Matter 2008, 4, 2373–2382. [Google Scholar] [CrossRef]
- Maestro, A.; Guzman, E.; Santini, E.; Ravera, F.; Liggieri, L.; Ortegaa, F.; Rubio, R.G. Wettability of silica nanoparticle–surfactant nanocomposite interfacial layers. Soft Matter 2012, 8, 837–843. [Google Scholar] [CrossRef]
- Agista, M.N.; Guo, K.; Yu, Z. A state of the art review of nanoparticles application in petroleum with a focus on enhanced oil recovery. Appl. Sci. 2018, 8, 871. [Google Scholar] [CrossRef] [Green Version]
- Binks, B.P. Particles as surfactants similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions stabilized solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100, 503–546. [Google Scholar] [CrossRef]
- Fan, H.; Striolo, A. Nanoparticle effects on the water-oil interfacial tension. Phys. Rev. E 2012, 86, 051610. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Davidson, D.; Bryant, S.L.; Huh, C. Nanoparticle-stabilized emulsions for applications in enhanced oil recovery. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010; Society of Petroleum Engineers: Richardson, TX, USA, 2010. [Google Scholar]
- Oruwori, A.E.; Ikiensikimama, S.S. Determination of water salinities in hydrocarbon bearing reservoirs of some Niger delta fields–Nigeria. In Proceedings of the Nigeria Annual International Conference and Exhibition, Calabar, Nigeria, 31 July–7 August 2010; Society of Petroleum Engineers: Richardson, TX, USA, 2010. [Google Scholar]
- Kim, I.; Taghavy, A.; DiCarlo, D.; Huh, C. Aggregation of silica nanoparticles and its impact on particle mobility under high-salinity conditions. J. Pet. Sci. Eng. 2015, 133, 376–383. [Google Scholar] [CrossRef]
- Zhong, X.; Li, C.; Li, Y.; Pu, H.; Zhou, Y.; Zhao, J.X. Enhanced oil recovery in high salinity and elevated temperature conditions with a zwitterionic surfactant and silica nanoparticles acting in synergy. Energy Fuels 2020, 34, 2893–2902. [Google Scholar] [CrossRef]
- Tjipto, E.; Quinn, J.F.; Caruso, F. Assembly of multilayer films from polyelectrolytes containing weak and strong acid moieties. Langmuir 2005, 21, 8785–8792. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Kampf, N.; Klein, J. Designer nanoparticles as robust superlubrication vectors. ACS Nano 2020, 14, 7008–7017. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.A.; Ahn, T. Effect of Capillary Number on the Residual Saturation of Colloidal Dispersions Stabilized by a Zwitterionic Surfactant. Appl. Sci. 2021, 11, 524. https://doi.org/10.3390/app11020524
Son HA, Ahn T. Effect of Capillary Number on the Residual Saturation of Colloidal Dispersions Stabilized by a Zwitterionic Surfactant. Applied Sciences. 2021; 11(2):524. https://doi.org/10.3390/app11020524
Chicago/Turabian StyleSon, Han Am, and Taewoong Ahn. 2021. "Effect of Capillary Number on the Residual Saturation of Colloidal Dispersions Stabilized by a Zwitterionic Surfactant" Applied Sciences 11, no. 2: 524. https://doi.org/10.3390/app11020524
APA StyleSon, H. A., & Ahn, T. (2021). Effect of Capillary Number on the Residual Saturation of Colloidal Dispersions Stabilized by a Zwitterionic Surfactant. Applied Sciences, 11(2), 524. https://doi.org/10.3390/app11020524