Compositional Modeling of Dimethyl Ether–CO2 Mixed Solvent for Enhanced Oil Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluid Modeling
2.2. Reservoir Modeling
2.3. Viscous Gravity Number (Ngv)
2.4. Minimum Miscible Pressure
3. Results
3.1. Effects of DME Injection on Oil Recovery
3.1.1. Vertical Sweep Efficiency
3.1.2. Displacement Efficiency
3.2. Recovery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muggeridge, A.H.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery rates, enhanced oil recovery and technological limits. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, L.W.; Johns, R.; Rossen, W.R.; Pope, G.A. Fundamentals of Enhanced Oil Recovery; Society of Petroleum Engineers: Richardson, TX, USA, 2014. [Google Scholar]
- Hu, W.; Wang, Z.; Ding, J.; Wang, Z.; Ma, Q.; Gao, Y. A new integrative evaluation method for candidate reservoirs of hydrocarbon gas drive. Geosyst. Eng. 2015, 18, 38–44. [Google Scholar] [CrossRef]
- Makimura, D.; Kunieda, M.; Liang, Y.; Matsuoka, T.; Takahashi, S.; Okabe, H. Application of Molecular Simulations to CO2-Enhanced Oil Recovery: Phase Equilibria and Interfacial Phenomena. SPE J. 2013, 18, 319–330. [Google Scholar] [CrossRef]
- Fassihi, M.R.; Gillham, T.H. The use of air injection to improve the double displacement processes. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1993. [Google Scholar]
- Talbi, K.; Kaiser, T.; Maini, B. Experimental Investigation of CO-Based VAPEX for Recovery of Heavy Oils and Bitumen. J. Can. Pet. Technol. 2008, 47, 1–8. [Google Scholar] [CrossRef]
- Cho, J.; Jeong, M.S.; Lee, Y.W.; Lee, H.S.; Lee, K.S. Techno-economic analysis of intermediate hydrocarbon injection on coupled CO2 storage and enhanced oil recovery. Energy Explor. Exploit. 2020, 1–19. [Google Scholar] [CrossRef]
- Cho, J.; Lee, K.S. Effects of hydrocarbon solvents on simultaneous improvement in displacement and sweep efficiencies during CO2 -enhanced oil recovery. Pet. Sci. Technol. 2016, 34, 359–365. [Google Scholar] [CrossRef]
- Cho, J.; Park, G.; Kwon, S.; Lee, K.S.; Lee, H.S.; Min, B. Compositional Modeling to Analyze the Effect of CH4 on Coupled Carbon Storage and Enhanced Oil Recovery Process. Appl. Sci. 2020, 10, 4272. [Google Scholar] [CrossRef]
- Kopcak, U.; Mohamed, R.S. Caffeine solubility in supercritical carbon dioxide/co-solvent mixtures. J. Supercrit. Fluids 2005, 34, 209–214. [Google Scholar] [CrossRef]
- Alston, R.; Kokolis, G.; James, C. CO2 Minimum Miscibility Pressure: A Correlation for Impure CO2 Streams and Live Oil Systems. Soc. Pet. Eng. J. 1985, 25, 268–274. [Google Scholar] [CrossRef]
- Kumar, N.; Von Gonten, W.D. An investigation of oil recovery by injecting CO2 and LPG mixtures. In Proceedings of the Fall Meeting of the Society of Petroleum Engineers of AIME, Las Vegas, NV, USA, 30 September–3 October 1973. [Google Scholar]
- Cho, J.; Kim, T.H.; Lee, K.S. Compositional modeling and simulation of dimethyl ether (DME)-enhanced water flood to investigate oil mobility improvement. Pet. Sci. 2018, 15, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Riele, P.T.; Parsons, C.; Boerrigter, P.; Plantenberg, J.; Suijkerbuijk, B.; Burggraaf, J.; Chernetsky, A.; Boersma, D.; Broos, R. Implementing a Water Soluble Solvent Based Enhanced Oil Recovery Technology—Aspects of Field Development Planning. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 21–23 March 2016. [Google Scholar]
- Chahardowli, M.; Farajzadeh, R.; Bruining, H. Experimental investigation of the use of the dimethyl ether/polymer hybrid as a novel enhanced oil recovery method. J. Ind. Eng. Chem. 2016, 38, 50–60. [Google Scholar] [CrossRef]
- Chahardowli, M.; Farajzadeh, R.; Masalmeh, S.K.; Mahani, H.; Bruining, H. A Novel Enhanced Oil Recovery Technology Using Dimethyl Ether/Brine: Spontaneous Imbibition in Sandstone and Carbonate Rocks. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, UAE, 26–28 September 2016. [Google Scholar]
- Chernetsky, A.; Masalmeh, S.; Eikmans, D.; Boerrigter, P.M.; Fadili, A.; Parsons, C.A.; Parker, A.; Boersma, D.M.; Cui, J.; Dindoruk, B. A novel enhanced oil recovery technique: Experimental results and modelling workflow of the DME enhanced water flood technology. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 9–12 November 2015. [Google Scholar]
- Parsons, C.; Chernetsky, A.; Eikmans, D.; Te Riele, P.; Boersma, D.; Sersic, I.; Broos, R. Introducing a novel enhanced oil recovery technology. In Proceedings of the IOR 2017-19th European Symposium on Improved Oil Recovery, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Chahardowli, M.; Zholdybayeva, A.; Farajzadeh, R.; Bruining, H. Solvent-enhanced spontaneous imbibition in fractured reservoirs. In Proceedings of the EAGE Annual Conference & Exhibition incorporating SPE Europec, London, UK, 10–13 June 2013. [Google Scholar]
- Javanmard, H.; Seyyedi, M.; Nielsen, S.M. On Oil Recovery Mechanisms and Potential of DME–Brine Injection in the North Sea Chalk Oil Reservoirs. Ind. Eng. Chem. Res. 2018, 57, 15898–15908. [Google Scholar] [CrossRef]
- Groot, J.A.W.M.; Chernetsky, A.; Riele, P.M.T.; Dindoruk, B.; Cui, J.; Wilson, L.C.; Ratnakar, R.R. Representation of Phase Behavior and PVT Workflow for DME Enhanced Water-Flooding. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 21–23 March 2016. [Google Scholar]
- Ratnakar, R.R.; Dindoruk, B.; Wilson, L. Use of DME as an EOR Agent: Experimental and Modeling Study to Capture Interactions of DME, Brine and Crudes at Reservoir Conditions. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, UAE, 26–28 September 2016. [Google Scholar]
- Ratnakar, R.R.; Dindoruk, B.; Wilson, L. Experimental investigation of DME–water–crude oil phase behavior and PVT modeling for the application of DME-enhanced water flooding. Fuel 2016, 182, 188–197. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Dindoruk, B.; Wilson, L.C. Development of empirical correlation for DME-partitioning between brine and crudes for enhanced water flooding applications. J. Pet. Sci. Eng. 2017, 157, 264–272. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Dindoruk, B.; Wilson, L.C. Phase behavior experiments and PVT modeling of DME-brine-crude oil mixtures based on Huron-Vidal mixing rules for EOR applications. Fluid Phase Equilibria 2017, 434, 49–62. [Google Scholar] [CrossRef]
- Karagoz, S. Process Design, Simulation and Integration of Dimethyl Ether (DME) Production from Shale Gas by Direct and Indirect Methods. Master’s Thesis, Texas A & M University, College Station, TX, USA, 2014. [Google Scholar]
- Srivastava, R.; Huang, S.; Dong, M. Laboratory Investigation of Weyburn CO2 Miscible Flooding. J. Can. Pet. Technol. 2000, 39, 41–51. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Lippmann, D.Z.; Curl, R.F.; Huggins, C.M.; Petersen, D.E. The Volumetric and Thermodynamic Properties of Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization1. J. Am. Chem. Soc. 1955, 77, 3433–3440. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Robinson, D.B.; Peng, D.Y. The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs; Research Report 28; Gas Processors Association: Tulsa, OK, USA, 1978. [Google Scholar]
- Lee, K.S.; Cho, J.; Lee, J.H. CO2 Storage Coupled with Enhanced Oil Recovery; Springer Science and Business Media LLC: Cham, Switzerland, 2020. [Google Scholar]
- Ganjdanesh, R.; Rezaveisi, M.; Pope, G.A.; Sepehrnoori, K. Treatment of Condensate and Water Blocks in Hydraulic-Fractured Shale-Gas/Condensate Reservoirs. SPE J. 2016, 21, 665–674. [Google Scholar] [CrossRef]
- Li, Y.K.; Nghiem, L.X. Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and Henry’s law. Can. J. Chem. Eng. 1986, 64, 486–496. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. Discuss. 2015, 15, 4399–4981. [Google Scholar] [CrossRef] [Green Version]
- Kułynycz, V. The influence of wettability on oil recovery. Drilling–Oil–Gas AGH 2015, 32, 493–502. [Google Scholar]
- Wheaton, R. Basic Rock and Fluid Properties. In Fundamentals of Applied Reservoir Engineering; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 5–57. [Google Scholar]
- Delshad, M.; Najafabadi, N.F.; Anderson, G.A.; Pope, G.A.; Sepehrnoori, K. Modeling wettability alteration in naturally fractured reservoirs. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 22–26 April 2006. [Google Scholar]
- Chugh, S.; Baker, R.; Cooper, L.; Spence, S. Simulation of Horizontal Wells to Mitigate Miscible Solvent Gravity Override in the Virginia Hills Margin. J. Can. Pet. Technol. 2000, 39, 28–34. [Google Scholar] [CrossRef]
- Cho, J.; Park, S.S.; Jeong, M.S.; Lee, K.S. Compositional Modeling for Optimum Design of Water-Alternating CO2 -LPG EOR under Complicated Wettability Conditions. J. Chem. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pourhadi, S.; Fath, A.H. Performance of the injection of different gases for enhanced oil recovery in a compositionally grading oil reservoir. J. Pet. Explor. Prod. Technol. 2019, 10, 641–661. [Google Scholar] [CrossRef] [Green Version]
- Adel, I.A.; Tovar, F.D.; Schechter, D.S. Fast-Slim Tube: A Reliable and Rapid Technique for the Laboratory Determination of MMP in CO2—Light Crude Oil Systems. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Ameri, M.; Fard, M.A.; Akbari, M.; Zamanzadeh, S.; Nasiri, E. A Comparison of Accuracy and Computational Time for Common and Artificial Methods in Predicting Minimum Miscibility Pressure. Energy Explor. Exploit. 2013, 31, 221–236. [Google Scholar] [CrossRef] [Green Version]
Component | Composition | Critical Pressure (kPa) | Critical Temperature (K) | Parachor | Acentric Factor | Molecular Weight (g/gmol) |
---|---|---|---|---|---|---|
N2 | 0.0207 | 3394.4 | 126.2 | 41 | 0.04 | 28.01 |
CO2 | 0.0074 | 7376.5 | 304.2 | 78 | 0.225 | 44.01 |
H2S | 0.0012 | 8936.9 | 373.2 | 80 | 0.1 | 34.08 |
C1 | 0.0749 | 4600.2 | 190.6 | 77 | 0.008 | 16.04 |
C2 | 0.0422 | 4883.9 | 305.4 | 108 | 0.098 | 30.07 |
C3 | 0.0785 | 4245.5 | 369.8 | 150 | 0.152 | 44.09 |
DME | 0.0001 | 5442.2 | 400.3 | 132 | 0.2 | 46.07 |
C4 | 0.0655 | 3722.7 | 416.5 | 185 | 0.1845 | 58.12 |
C5 | 0.0459 | 3379.4 | 464.9 | 228 | 0.239 | 72.15 |
C6-9 | 0.2155 | 3019.6 | 556.4 | 296 | 0.331 | 102.5 |
C10-17 | 0.2202 | 2017.5 | 692.3 | 505 | 0.584 | 184 |
C18-27 | 0.1027 | 1327.0 | 808.4 | 768 | 0.893 | 306.2 |
C28+ | 0.1252 | 1155.1 | 915.5 | 1001 | 1.1 | 585.61 |
Parameters | Fluid Model | Experimental Data |
---|---|---|
Saturation Pressure (kPa) | 4784.95 | 4920 |
Oil density at psat (kg/m3) | 805.73 | 806.4 |
Oil viscosity at psat (mPa·s) | 1.75 | 1.76 |
Formation volume factor | 1.11 | 1.12 |
API (°) | 34.8 | 31 |
N2 | CO2 | H2S | C1 | C2 | C3 | DME | C4 | C5 | C6-9 | C10–17 | C18–27 | C28+ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | 0.00 | - | - | - | - | - | - | - | - | - | - | - | - |
CO2 | 0.00 | 0.00 | - | - | - | - | - | - | - | - | - | - | - |
H2S | 0.13 | 0.14 | 0.00 | - | - | - | - | - | - | - | - | - | - |
C1 | 0.25 | 0.11 | 0.07 | 0.00 | - | - | - | - | - | - | - | - | - |
C2 | 0.01 | 0.13 | 0.09 | 0.00 | 0.00 | - | - | - | - | - | - | - | - |
C3 | 0.09 | 0.13 | 0.08 | 0.01 | 0.00 | 0.00 | - | - | - | - | - | - | - |
DME | 0.10 | 0.00 | 0.00 | 0.29 | 0.25 | 0.25 | 0.00 | - | - | - | - | - | - |
C4 | 0.10 | 0.12 | 0.08 | 0.02 | 0.01 | 0.00 | 0.25 | 0.00 | - | - | - | - | - |
C5 | 0.10 | 0.12 | 0.07 | 0.02 | 0.01 | 0.00 | 0.25 | 0.00 | 0.00 | - | - | - | - |
C6-9 | 0.11 | 0.12 | 0.05 | 0.03 | 0.02 | 0.01 | 0.20 | 0.00 | 0.00 | 0.00 | - | - | - |
C10-17 | 0.11 | 0.12 | 0.05 | 0.06 | 0.04 | 0.02 | 0.08 | 0.02 | 0.01 | 0.01 | 0.00 | - | - |
C18-27 | 0.11 | 0.12 | 0.05 | 0.09 | 0.06 | 0.05 | 0.08 | 0.03 | 0.03 | 0.02 | 0.00 | 0.00 | - |
C28+ | 0.11 | 0.12 | 0.05 | 0.12 | 0.09 | 0.07 | 0.08 | 0.05 | 0.05 | 0.03 | 0.01 | 0.00 | 0.00 |
Case | Injection Gas Contents |
---|---|
1 | 100% CO2 + 0% DME |
2 | 90% CO2 + 10% DME |
3 | 85% CO2 + 15% DME |
4 | 75% CO2 + 25% DME |
Properties | Values |
---|---|
Initial Pressure (kPa) | 13,789 |
Initial oil saturation | 0.88 |
Porosity (%) | 30 |
Permeability (m2) | 4.9 × 10−14 |
Producing pressure (kPa) | 11,031 |
Total injection (PV) | 1.5 |
Case | Viscous Gravity Number (Ngv) |
---|---|
1 | 5.06 |
2 | 3.94 |
3 | 3.26 |
4 | 1.70 |
Case | MMP (kPa) |
---|---|
1 | 14,127 |
2 | 13,065 |
3 | 12,079 |
4 | 9866 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.W.; Lee, H.S.; Jeong, M.S.; Cho, J.; Lee, K.S. Compositional Modeling of Dimethyl Ether–CO2 Mixed Solvent for Enhanced Oil Recovery. Appl. Sci. 2021, 11, 406. https://doi.org/10.3390/app11010406
Lee YW, Lee HS, Jeong MS, Cho J, Lee KS. Compositional Modeling of Dimethyl Ether–CO2 Mixed Solvent for Enhanced Oil Recovery. Applied Sciences. 2021; 11(1):406. https://doi.org/10.3390/app11010406
Chicago/Turabian StyleLee, Young Woo, Hye Seung Lee, Moon Sik Jeong, Jinhyung Cho, and Kun Sang Lee. 2021. "Compositional Modeling of Dimethyl Ether–CO2 Mixed Solvent for Enhanced Oil Recovery" Applied Sciences 11, no. 1: 406. https://doi.org/10.3390/app11010406
APA StyleLee, Y. W., Lee, H. S., Jeong, M. S., Cho, J., & Lee, K. S. (2021). Compositional Modeling of Dimethyl Ether–CO2 Mixed Solvent for Enhanced Oil Recovery. Applied Sciences, 11(1), 406. https://doi.org/10.3390/app11010406