Absolute Quantitative Volatile Measurement from Fresh Tea Leaves and the Derived Teas Revealed Contributions of Postharvest Synthesis of Endogenous Volatiles for the Aroma Quality of Made Teas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Chemicals
2.2. Volatile Extraction
2.3. Volatile Identification and Quantification
2.4. Calculation of Volatile Concentration from Tea Infusion and Odor-Activity Value
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, T. Tea Classification. Tea Making; China Agriculture Press: Beijing, China, 2016. [Google Scholar]
- Zheng, X.; Nie, Y.; Gao, Y.; Huang, B.; Ye, J.; Lu, J.; Liang, Y. Screening the cultivar and processing factors based on the flavonoid profiles of dry teas using principal component analysis. J. Food Comp. Anal. 2018, 67, 29–37. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant. Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Kobayashi, E.; Katsuno, T.; Asanuma, T.; Fujimori, T.; Ishikawa, I.; Tomomura, M.; Mochizuki, K.; Watase, T.; Nakamura, Y.; et al. Characterization of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chem. 2012, 135, 2268–2276. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.M.; Chen, Y.Y.; Mei, X.; Katsuno, T.; Kobayashi, E.; Dong, F.; Watanabe, N.; Yang, Z.Y. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Sci. Rep. 2015, 5, 16858. [Google Scholar] [CrossRef] [PubMed]
- Yener, S.; Sánchez-López, J.A.; Granitto, P.M.; Cappellin, L.; Märk, T.D.; Zimmerman, R.; Bonn, G.; Yeretzian, C.; Biasioli, F. Rapid and direct volatile compound profiling of black and green teas (Camellia sinensis) from different countries with Ptr-ToF-ms. Talanta 2016, 152, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Yang, Z.Y.; Baldermann, S.; Sato, Y.; Asai, T.; Watanabe, N. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. J. Agri. Food Chem. 2011, 59, 13131–13135. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.M.; Sun, X.L.; Dong, W.X.; Wang, G.C.; Chen, Z.M. Herbivore species, infestation time, and erbivoredensity affect induced volatiles in tea plants. Chemoecology 2014, 24, 1–14. [Google Scholar] [CrossRef]
- Mei, X.; Liu, X.Y.; Zhou, Y.; Wang, X.Q.; Zeng, L.T.; Fu, X.M.; Li, J.L.; Tang, J.C.; Dong, F.; Yang, Z.Y. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (matsumurasca) onukii matsuda). Food Chem. 2017, 237, 356–363. [Google Scholar] [CrossRef]
- Zeng, L.T.; Zhou, Y.; Fu, X.M.; Liao, Y.Y.; Yuan, Y.F.; Jia, Y.X.; Dong, F.; Yang, Z.Y. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. J. Agri. Food Chem. 2018, 66, 3899–3909. [Google Scholar] [CrossRef]
- Cao, F.R.; Liu, K.B.; Liu, C.Y.; Wang, D.L. Studies on the induction of aromatic constituents in fresh leaves of Lingtou Dancong tea by low temperature stress (In Chinese). Front. Agri. China 2006, 1, 81–140. [Google Scholar] [CrossRef]
- Cho, J.Y.; Mizutani, M.; Shimizu, B.; Kinoshita, T.; Ogura, M.; Tokoro, K.; Lin, M.L.; Sakata, K. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea Oriental beauty. Biosci. Biotech. Biochem. 2007, 71, 1476–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.; Yang, Y.C.; Zhang, G.H.; Chen, H.; Lu, J.L.; Du, Y.Y.; Ye, J.H.; Ye, Q.; Borthakur, D.; Zheng, X.Q. Effect of ultraviolet B on release of volatiles in tea leaf. Int. J. Food Prop. 2010, 13, 608–617. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Mochizuki, K.; Watase, T.; Kobayashi, E.; Katsuno, T.; Asanuma, T.; Tomita, K.; Morita, A.; Suzuki, T.; Nakamura, Y. Influences of light emitting diodes irradiations and shade treatments on volatile profiles and related metabolites of leaves of tea (Camellia sinensis) plants and postharvest tea leaves. In Advances and Challenges in Flavor Chemistry & Biology; Hofmann, T., Meyerhof, W., Schieberle, P., Eds.; Deutsche Forschungsanstalt Lebensmittelchemie: Freising, Germany, 2010; pp. 207–213. [Google Scholar]
- Gui, J.D.; Fu, X.M.; Zhou, Y.; Katsuno, T.; Mei, X.; Deng, R.F.; Xu, X.L.; Zhang, L.Y.; Dong, F.; Watanabe, N.; et al. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? J. Agri. Food Chem. 2015, 63, 6905–6914. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.T.; Zhou, Y.; Gui, J.D.; Fu, X.M.; Mei, X.; Zhen, Y.P.; Ye, T.X.; Du, B.; Dong, F.; Watanabe, N. Formation of volatile tea constituent indole during the oolong tea manufacturing process. J. Agr. Food Chem. 2016, 64, 5011–5019. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zeng, L.T.; Liu, X.Y.; Gui, J.D.; Mei, X.; Fu, X.M.; Dong, F.; Tang, J.C.; Zhang, L.Y.; Yang, Z.Y. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem. 2017, 231, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.B.; Zhang, Y.; Du, Z.H.; Liu, R.M.; Guo, L.; Chen, C.S.; Wu, H.L.; Chen, M.J. Establishing a quantitative volatile measurement method in tea by integrating sample extraction method optimizations and data calibration. Flavor Fragr. J. 2020, 36, 64–74. [Google Scholar] [CrossRef]
- Liu, R.M.; Du, Z.H.; Zhang, Y.; Shi, Y.Y.; Chen, X.B.; Lin, L.; Xiong, Y.M.; Chen, M.J. Volatile component quantification in combination with putative gene expression analysis reveal key players in aroma formation during fruit ripening in Carica papaya cv Hong fei. Postharvest Bio. Tech. 2019, 158, 110987. [Google Scholar] [CrossRef]
- Hatsis, P.; Waters, N.J.; Argikar, U.A. Implications for metabolite quantification by mass spectrometry in the absence of authentic standards. Drug Metab Dispos. 2017, 45, 492–496. [Google Scholar] [CrossRef]
- Kinoshita, T.; Hirata, S.; Yang, Z.; Baldermann, S.; Kitayama, E.; Matsumoto, S.; Suzuki, M.; Fleischmann, P.; Winterhalter, P.; Watanabe, N. Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chem. 2010, 123, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.Y.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Cadwallader, K. Measuring cheese flavor. In Improving the Flavour of Cheese; Weimer, B.C., Ed.; Woodhead Publishing: Cambridge, UK, 2007; pp. 401–417. [Google Scholar]
- Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W. The volatile constituents in the peel and pulp of a green Thai mango, khieo sawoei Cultivar (Mangifera indica L.). Food Sci. Technol. Res. 2001, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Pino, J.A.; Quijano, C.E. Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Ciênc. Tecnol. Aliment. Camp. 2012, 32, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Slaghenaufi, D.; Boscaini, A.; Prandi, A.; Cin, A.D.; Zandonà, V.; Luzzini, G.; Ugliano, M. Influence of different modalities of grape withering on volatile compounds of young and aged corvina wines. Molecules 2020, 25, 2141. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; Academic Press: Cambridge, MA, USA, 2019; pp. 95–121. [Google Scholar]
- Gong, X.; Han, Y.; Zhu, J.; Hong, L.; Zhu, D.; Liu, J.; Zhang, X.; Niu, Y.; Xiao, Z. Identification of the aroma-active compounds in Longjing tea characterized by odor activity value, gas chromatography- olfactometry, and aroma recombination. Int. J. Food Prop. 2017, 20, S1107–S1121. [Google Scholar] [CrossRef]
- Cliff, M.; Stanich, K.; Trijillo, J.M.; Toivonen, P.; Forney, C.F. Determination and prediction of odor thresholds for odor active volatiles in a natural apple juice matrix. J. Food Qual. 2011, 34, 177–186. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Han, Z.X.; Rana, M.M.; Liu, G.F.; Gao, M.J.; Li, D.X.; Wu, F.G.; Li, X.B.; Wan, X.C.; Wei, S. Data on green tea flavor determinants as affected by cultivars and manufacturing processes. Data Brief. 2017, 10, 492–498. [Google Scholar] [CrossRef]
- Ito, Y.; Kubota, K. Sensory evaluation of the synergism among odorants present in concentrations below their odor threshold in a Chinese jasmine green tea infusion. Mol. Nutr. Food Res. 2005, 49, 61–68. [Google Scholar] [CrossRef]
- Buttery, R.G.; Guadagni, D.G.; Ling, L.C. Volatile aroma components of cooked Artichoke. J. Agric. Food Chem. 1978, 26, 791–793. [Google Scholar] [CrossRef]
- Risner, D.; Tomasino, E.; Hughes, P.; Meunier-Goddik, L. Volatile aroma composition of distillates produced from fermented sweet and acid whey. J. Dairy Sci. 2019, 102, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Apps, P.J.; Weldon, P.J.; Kramer, M. Chemical signals in terrestrial vertebrates: Search for design features. Nat. Prod. Rep. 2015, 32, 1131–1153. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.H. Whisky Science; Springer Nature: Cham, Switzerland, 2019; pp. 421–468. [Google Scholar] [CrossRef]
- van Gemert, L.J. Compilations of Odour Threshold Values in Air, Water and Other Media; Van Setten Kwadraat: Houten, The Netherlands, 2003. [Google Scholar]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients; CRC Press: Boca Raton, FL, USA, 2009; Available online: https://www.routledgehandbooks.com/doi/10.1201/9781439847503-c3 (accessed on 1 January 2020).
- Shinoda, R.; Takahashi, K.; Ichikawa, S.; Wakayama, M.; Kobayashi, A.; Miyagawa, S.; Uchimura, T. Using SPME-GC/REMPI-TOFMS to measure the volatile odor-active compounds in freshly cooked rice. ACS Omega. 2020, 5, 20638–20642. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, Q.; Zhuang, J.; Feng, T.; Ho, C.; Song, S. Characterization of aroma-active compounds in four yeast extracts using instrumental and sensory techniques. J. Agric. Food Chem. 2020, 68, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zeng, Z.; Zhao, C.; Kong, H.; Lu, X.; Xu, G. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and multivariate data analysis. J. Chrom. A 2013, 1313, 245–252. [Google Scholar] [CrossRef] [PubMed]
Boiling Point (°C) | Aroma Descriptions | Contents (µg. g−1 DW) | |||||||
---|---|---|---|---|---|---|---|---|---|
RT (min) | RIlit | RIexp | Identification | Fresh Leaves (n = 4) | Green Tea (n = 3) | Oolong Tea (n = 4) | Black Tea (n = 3) | ||
8.966 | 960 | unknown 1 | nf | nf | 2.45 ± 1.19 | nd | nd | nd | |
9.344 | 983 | unknown 2 | nf | nf | 6.47 ± 2.05 | nd | nd | nd | |
10.31 | 1022 | unknown 3 | nf | nf | 1.26 ± 0.27 | nd | nd | nd | |
10.631 | 1028.9 | 1031 | β-cis-ocimene | 175.2 | Fruity, floral | 4.71 ± 1.48 a | 0.10 ± 0.03 b | 0.11 ± 0.03 b | 0.05 ± 0.01 c |
11.388 | 1075.1 | 1079.4 | cis-linalool oxide (furanoid) | 188 | Fresh, floral | 3.55 ± 0.51 a | 0.12 ± 0.03 b | 0.12 ± 0.03 b | 0.41 ± 0.10 c |
11.876 | 1083.3 | 1080.1 | trans-linalool oxide (furanoid) | 222.6 | flower | 5.94 ± 0.98 a | 0.13 ± 0.04 b | 0.13 ± 0.03 b | 0.86 ± 0.21 c |
12.272 | 1099 | 1095.7 | Linalool | 199 | flower, lavender | 23.14 ± 2.09 a | 0.23 ± 0.06 b | 0.19 ± 0.04 b | 1.06 ± 0.27 c |
12.427 | 1106.8 | 1104 | Hotrienol | 80–84 | Fruity | nd | nd | 0.42 ± 0.07 a | nd |
12.691 | 1113 | 1109 | (E)-4,8-dimethylnona-1,3,7-triene | 81 | nf | 3.47 ± 0.81 a | 0.14 ± 0.03 b | nd | nd |
13.383 | 1128 | 1124.3 | Benzyl nitrile | 190.7 | pungent smell | 0.32 ± 0.03 a | 0.17 ± 0.04 b | 0.20 ± 0.08 b | nd |
14.475 | 1114.9 | 1113.1 | Phenylethyl alcohol | 219 | Fresh, rose aroma | 0.14 ± 0.02 a | nd | nd | nd |
14.604 | 1164.7 | 1162 | (Z)-3-Hexenyl butanoate | 98 | Aroma like apple and grass | 0.45 ± 0.09 a | 0.27 ± 0.06 b | nd | 0.22 ± 0.07 b |
14.677 | 1171 | 1174 | trans-pyranoid linalool oxide | 201–202 | Earthy | nd | nd | nd | 0.41 ± 0.07 a |
14.865 | 1180 | 1178 | Dodecane | 216 | nf | 0.88 ± 0.19 a | nd | 0.10 ± 0.02 b | 0.14 ± 0.03 b |
15.107 | 1187 | 1184.1 | Methyl salicylate | 223.3 | Minty flavor | 11.04 ± 1.51 a | 0.08 ± 0.02 b | nd | 0.45 ± 0.12 c |
15.386 | 1189 | 1188 | 2,6-dimethyl-3,7-octadiene-2,6-diol | 284 | pungent and bad smell | nd | nd | 0.11 ± 0.03 a | nd |
16.231 | 1191.5 | 1190 | Hexyl butanoate | 205 | Green, fruity | 0.56 ± 0.10 a | nd | 0.08 ± 0.02 b | 0.08 ± 0.03 b |
16.252 | 1200.9 | 1203 | 4-methylpentyl 2-methylbutanoate | nf | nf | nd | nd | nd | 0.12 ± 0.03 a |
16.418 | 1236.3 | 12,331 | Hexyl 2-methyl butanoate | 217–219 | Green, fruity | nd | nd | nd | 0.11 ± 0.03 a |
16.899 | 1253 | 1250 | (E)- geraniol | 230 | rose, floral | 2.30 ± 0.77 a | 0.14 ± 0.06 b | nd | nd |
17.22 | 1249 | 1254 | 1,3-bis(1,1-dimethylethyl)benzene | 106–107 | nf | nd | nd | 0.09 ± 0.01 | nd |
17.595 | 1260 | 1261 | 2,5-dihydro-2,5-dimethoxyfuran | 160–162 | nf | nd | nd | 0.12 ± 0.02 | nd |
18.033 | 1298.4 | 1301.6 | Indole | 253–254 | mothball, burnt | 5.19 ± 0.81 a | 0.73 ± 0.15 b | 0.78 ± 0.18 b | nd |
20.516 | 1333 | 1330 | cis-3-hexenyl hexanoate | 115 | Tender, fresh and clean aroma | 1.05 ± 0.14 a | 0.26 ± 0.06 b | nd | nd |
20.679 | 1368 | 1370 | trans-2-hexenyl hexanoate | 79 | fruity | nd | 0.23 ± 0.05 a | 0.20 ± 0.02 a | 0.51 ± 0.11 b |
20.753 | 1381 | 1378 | Hexyl hexanoate | 246 | fruity | nd | 0.06 ± 0.02 a | 0.12 ± 0.03 b | 0.19 ± 0.04 c |
20.837 | 1382 | unknown 4 | nf | nf | nd | nd | nd | 0.10 ± 0.11 | |
21.124 | 1394.6 | 1396.8 | cis-Jasmone | 248 | sweet, flower | 0.15 ± 0.01 | 0.18 ± 0.03 | 0.18 ± 0.04 | nd |
21.743 | 1413.5 | 1410.7 | β-caryophyllen | 262–264 | nf | 0.45 ± 0.07 | 0.43 ± 0.66 | nd | nd |
21.751 | 1420.1 | 1418 | (E)-caryophyllene | 266–268 | nf | nd | nd | nd | 0.05 ± 0.01 a |
22.36 | 1453.1 | 1451 | α-humulene | nf | nf | nd | nd | nd | 0.06 ± 0.01 a |
22.361 | 1455.9 | 1451.6 | (E)-β-farnesene | 271 | Floral | nd | nd | 0.01 ± 0.03 a | nd |
22.468 | 1468.2 | 1463.3 | (E)-2-dodecenal | 93 | nf | nd | nd | nd | 0.05 ± 0.00 a |
22.696 | 1472.8 | 1472 | 1-dodecanol | 255–259 | grease | nd | nd | nd | 0.07 ± 0.03 a |
23.367 | 1480.6 | 1478.6 | Germacrene D | 279.7 | floral | 0.11 ± 0.02 a | nd | nd | nd |
23.382 | 1485.9 | 1484 | trans-β-ionone | 239 | seaweed, violet, flower, raspberry | nd | 0.17 ± 0.17 a | nd | 0.06 ± 0.01 a |
23.455 | 1504.1 | 1499.4 | α-farnesene | 260 | Floral, fresh | nd | 0.31 ± 0.23 a | 0.39 ± 0.03 a | nd |
23.471 | 1502 | Nerolidol isobutyrate | 361.9 | Sweet, rose-like | 0.23 ± 0.08 a | nd | nd | nd | |
23.482 | 1510 | 1507 | Tridecanal | 132–136 | nf | nd | nd | nd | 0.16 ± 0.02 a |
23.73 | 1513.1 | 1512 | γ-cadinene | 272 | Floral, fresh, sweet | 0.05 ± 0.06 a | nd | nd | nd |
23.9 | 1517.8 | 1518 | cis-jasmin lactone | 130 | sweet, flower | nd | 0.07 ± 0.01 a | nd | nd |
24.205 | 1523.2 | 1520 | δ-cadinene | 279 | nf | nd | nd | 0.09 ± 0.01 a | nd |
24.311 | 1528 | 1524 | trans-calamenene | 285–286 | nf | 0.21 ± 0.04 a | nd | nd | nd |
24.323 | 1529 | 1526 | Naphthalene | 217.9 | Tar, camphoric and greasy odor | nd | 0.12 ± 0.02 a | nd | 0.09 ± 0.01 b |
24.431 | 1527.2 | cis-hexahydro-8a-methyl-1,8(2H,5H)-naphthalenedione | nf | nf | nd | 0.08 ± 0.02 | 0.07 ± 0.00 | nd | |
24.637 | 1531 | 1532 | Cis-cadina-1(2),4-diene | 137.9 | nf | 0.11 ± 0.04 a | nd | nd | nd |
24.644 | 1532 | 1533.4 | (E)-γ-bisabolene | 262 | nf | nd | 0.03 ± 0.00 a | nd | nd |
24.998 | 1535 | 1536 | Dihydroactinidiolide | 296.1 | Floral, rose-like | nd | nd | nd | 0.11 ± 0.06 a |
25.149 | 1533.3 | 1537.3 | α-cadinene | 271 | green | 0.08 ± 0.02 a | 0.04 ± 0.01 b | nd | nd |
25.308 | 1541 | 1543 | E-nerolidol | 276 | Slight neroli-like, rose-like and sweet flavor | 0.47 ± 0.14 a | 1.17 ± 0.10 b | 1.03 ± 0.18 b | 0.51 ± 0.08 c |
25.324 | 1550.9 | 1547 | Germacrene B | 287.2 | nf | nd | 0.11 ± 0.03 a | nd | nd |
25.626 | 1572.9 | 1568 | (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene | 293.2 | nf | 0.52 ± 0.09 a | nd | 0.13 ± 0.01 b | 0.20 ± 0.04 c |
25.773 | 1562 | 1570 | cis-3-hexanyl n-octanoate | 292.5 | nf | nd | nd | 0.14 ± 0.02 a | nd |
25.928 | 1569.5 | 1573 | (Z)-3-hexenyl benzoate | 105 | Green, herb-like | 0.06 ± 0.08 | 0.08 ± 0.01 | 0.08 ± 0.00 | 0.07 ± 0.01 |
26.297 | 1581.8 | 1580 | Hexyl benzoate | 272 | Wood, green | 0.07 ± 0.05 a | 0.11 ± 0.01 a | 0.13 ± 0.01 b | 0.14 ± 0.04 b |
26.667 | 1588 | 1590.1 | E-2-hexenyl benzoate | 165–166 | nf | nd | 0.04 ± 0.00 a | nd | nd |
27.048 | 1655 | 1650 | Methyl jasmonate | 302.9 | Sweent, jasmine-like | nd | 1.04 ± 0.74 a | nd | nd |
27.676 | 1670 | 1672 | cis-3-hexenyl salicylate | 145 | Flower, green | nd | 0.08 ± 0.01 a | nd | nd |
27.677 | 1676.3 | 1673.2 | 1-tetradecanol | 289 | Wax-like | nd | nd | nd | 0.06 ± 0.01 a |
28.337 | 1673 | 1675 | α-cadinol | 137–139 | Sweet, baking aroma | nd | nd | nd | 0.05 ± 0.00 a |
29.903 | 1827 | 1823.1 | Neophytadiene | 128 | nf | 0.09 ± 0.04 a | 0.07 ± 0.02 a | 0.06 ± 0.01 a | 0.41 ± 0.19 b |
31.359 | 1830 | 1834 | Hexadecanal | 151 | nf | nd | nd | nd | 0.05 ± 0.02 a |
32.162 | 1842 | 1840 | Caffeine | 178 | nf | 0.64 ± 0.07 a | 0.85 ± 0.20 a | 0.62 ± 0.39 a | 0.94 ± 0.20 b |
32.985 | 1927 | 1931 | n-hexadecanoic acid methyl ester | 185 | nf | nd | 0.09 ± 0.02 a | 0.05 ± 0.04 a | nd |
Total | 76.13 ± 11.66 a | 7.73 ± 0.71 b | 5.77 ± 0.74 c | 7.80 ± 1.83 b |
Compound | Threshold (µg. L−1) | Ref. | Concentration in Tea Infusion (µg. L−1) | OAV | ||||
---|---|---|---|---|---|---|---|---|
Green Tea | Oolong Tea | Black Tea | Green Tea | Oolong Tea | Black Tea | |||
β-cis-ocimene | 34 | [24] | 2.0 | 5.1 | 1.0 | <1 | 0<1 | <1 |
cis-linalool oxide (furanoid) | 320 | [25] | 2.4 | 5.3 | 8.2 | <1 | <1 | <1 |
trans-linalool oxide (furanoid) | 320 | [25] | 2.7 | 6.1 | 17.2 | <1 | <1 | <1 |
Linalool | 1 | [24] | 4.6 | 8.9 | 21.3 | 4.6 | 8.9 | 21.3 |
Hotrienol | 110 | [26] | nd | 18.9 | nd | <1 | <1 | <1 |
(E)-4,8-dimethylnona-1,3,7-triene | nf | 2.8 | nd | nd | nf | nf | nf | |
Benzyl nitrile | 1000 | [25] | 3.3 | 9.3 | nd | <1 | <1 | <1 |
(Z)-3-hexenyl butanoate | 500 | [24] | 5.4 | nd | 4.4 | <1 | <1 | <1 |
trans- linalool oxide (pyranoid) | 0.025 | [27] | nd | nd | 8.2 | <1 | <1 | 329.0 |
Dodecane | nf | nd | 4.4 | 2.8 | nf | nf | nf | |
Methyl salicylate | 40 | [28] | 1.5 | nd | 9.0 | <1 | <1 | <1 |
2,6-dimethyl-3,7-octadiene-2,6-diol | 89 | nd | 5.2 | nd | <1 | <1 | <1 | |
Hexyl butanoate | 607 | [29] | nd | 3.8 | 1.6 | <1 | <1 | <1 |
4-methylpentyl 2-methylbutanoate | nf | nd | nd | 2.3 | nf | nf | nd | |
Hexyl 2-methyl butanoate | nf | nd | nd | 2.2 | nf | nf | nf | |
(E)- geraniol | 1.1 | [30] | 2.8 | nd | nd | 2.6 | <1 | <1 |
1,3-bis(1,1-dimethylethyl)benzene | 81 | nd | 3.9 | nd | <1 | <1 | <1 | |
2,5-dihydro-2,5-dimethoxyfuran | 13 | [24] | nd | 5.5 | nd | <1 | <1 | <1 |
Indole | 1 | [31] | 14.7 | 35.3 | nd | 14.7 | 35.2 | <1 |
cis-3-hexenyl hexanoate | 16 | [25] | 5.1 | nd | nd | <1 | <1 | <1 |
trans-2-hexenyl hexanoate | 781 | [32] | 4.7 | 9.1 | 10.1 | <1 | <1 | <1 |
Hexyl hexanoate | 820 | [32] | 1.1 | 5.6 | 3.9 | <1 | <1 | <1 |
unknown 4 | nf | nd | nd | 2.0 | nf | nf | nf | |
cis-Jasmone | 1.9 | [33] | 3.7 | 8.4 | nd | 1.9 | 4.4 | <1 |
β-caryophyllen | 150 | [24] | 8.5 | nd | nd | <1 | <1 | <1 |
(E)-caryophyllene | 64 | [34] | nd | nd | 0.9 | <1 | <1 | <1 |
α-humulene | 390 | [24] | nd | nd | 1.2 | <1 | <1 | <1 |
(E)-β-farnesene | 87 | nd | 0.6 | nd | <1 | <1 | <1 | |
(E)-2-dodecanal | 20 | [25] | nd | nd | 1.1 | <1 | <1 | <1 |
1-dodecanol | 0.5 | [35] | nd | nd | 1.4 | <1 | <1 | 2.7 |
trans-β-ionone | 0.2 | [25] | 3.4 | nd | 1.1 | 16.9 | <1 | 5.7 |
α-farnesene | 0.1 | [36] | 6.1 | 17.8 | nd | 61.0 | 178 | <1 |
γ-cadinene | nf | 1.4 | nd | nd | nf | nf | nf | |
cis-jasmin lactone | 2000 | [37] | nd | nd | 3.2 | <1 | <1 | <1 |
δ-cadinene | 120 | [37] | nd | 4.1 | nd | <1 | <1 | <1 |
trans-calamenene | nf | 2.4 | nd | 1.8 | nf | nf | nf | |
Naphthalene | 300 | 1.6 | 3.1 | nd | <1 | <1 | <1 | |
8a-methylhexahydro-1,8(2H,5H)-naphthalenedione | nf | nd | nd | 2.3 | nf | nf | nf | |
(R)-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one | nf | 0.8 | nd | nd | nf | nf | nf | |
α-cadinene | nf | 0.7 | nd | nd | nf | nf | nf | |
E-nerolidol | 15 | [38] | 2.27 | nd | nd | <1 | <1 | <1 |
Germacrene B | nf | 23.4 | 47.0 | 10.2 | nf | nf | nf | |
(3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene | nf | nd | 6.0 | 4.0 | nf | nf | nf | |
cis-3-hexanyl n-octanoate | nf | nd | 6.2 | nd | nf | nf | nf | |
(Z)-3-hexenyl benzoate | 4.5 | 1.6 | 3.6 | 1.4 | <1 | <1 | <1 | |
Hexyl benzoate | nf | 2.2 | 6.0 | 2.9 | nf | nf | nf | |
E-2-hexenyl benzoate | nf | nd | nd | 1.2 | nf | nf | nf | |
Methyl jasmonate | 70 | [38] | nd | nd | 0.9 | <1 | <1 | <1 |
cis-3-hexenyl salicylate | nf | 0.9 | nd | nd | nf | nf | nf | |
1-tetradecanol | 5000 | [37] | 20.8 | nd | nd | <1 | <1 | <1 |
α-cadinol | nf | 1.7 | nd | nd | nf | nf | nf | |
Neophytadiene | nf | 1.4 | 2.6 | 8.3 | nf | nf | nf | |
Hexadecanal | 75 | [25] | nd | nd | 1.1 | <1 | <1 | <1 |
Caffeine | 29,000 | [39] | 17.0 | 28.3 | 18.8 | <1 | <1 | <1 |
n-hexadecanoic acid methyl ester | 1000 | [25] | 1.8 | 2.3 | nd | <1 | <1 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Guo, L.; Zhou, H.; Guo, Y.; Zhang, Y.; Lin, Z.; Sun, M.; Zeng, W.; Wu, H. Absolute Quantitative Volatile Measurement from Fresh Tea Leaves and the Derived Teas Revealed Contributions of Postharvest Synthesis of Endogenous Volatiles for the Aroma Quality of Made Teas. Appl. Sci. 2021, 11, 613. https://doi.org/10.3390/app11020613
Chen M, Guo L, Zhou H, Guo Y, Zhang Y, Lin Z, Sun M, Zeng W, Wu H. Absolute Quantitative Volatile Measurement from Fresh Tea Leaves and the Derived Teas Revealed Contributions of Postharvest Synthesis of Endogenous Volatiles for the Aroma Quality of Made Teas. Applied Sciences. 2021; 11(2):613. https://doi.org/10.3390/app11020613
Chicago/Turabian StyleChen, Mingjie, Li Guo, Huiwen Zhou, Yaling Guo, Yi Zhang, Zhi Lin, Meng Sun, Wei Zeng, and Hualing Wu. 2021. "Absolute Quantitative Volatile Measurement from Fresh Tea Leaves and the Derived Teas Revealed Contributions of Postharvest Synthesis of Endogenous Volatiles for the Aroma Quality of Made Teas" Applied Sciences 11, no. 2: 613. https://doi.org/10.3390/app11020613
APA StyleChen, M., Guo, L., Zhou, H., Guo, Y., Zhang, Y., Lin, Z., Sun, M., Zeng, W., & Wu, H. (2021). Absolute Quantitative Volatile Measurement from Fresh Tea Leaves and the Derived Teas Revealed Contributions of Postharvest Synthesis of Endogenous Volatiles for the Aroma Quality of Made Teas. Applied Sciences, 11(2), 613. https://doi.org/10.3390/app11020613