Validation of Lumbar Compressive Force Simulation in Forward Flexion Condition
Abstract
:1. Introduction
2. Method
2.1. Subjects and Tasks
2.2. Instrumentation
2.3. CF Estimation
2.3.1. CF Simulator
2.3.2. Model of Merryweather
2.3.3. Model of Potvin
2.3.4. CF Estimated by Invasive Data
2.3.5. Validation
3. Result
3.1. CF Estimation
3.2. Influence of Dynamic Motion
3.3. Regression Analysis
3.4. Precision Analysis
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Abajobir, A.A.; Abate, K.H. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Marras, W.S.; Jorgensen, M.J.; Davis, K.G. Effect of foot movement and an elastic lumbar back support on spinal loading during free-dynamic symmetric and asymmetric lifting exertions. Ergonomics 2000, 43, 653–668. [Google Scholar] [CrossRef]
- Burdorf, A.; Koppelaar, E.; Evanoff, B. Assessment of the impact of lifting device use on low back pain and musculoskeletal injury claims among nurses. Occup. Environ. Med. 2013, 70, 491–497. [Google Scholar] [CrossRef] [PubMed]
- De Looze, M.P.; Bosch, T.; Krause, F. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 2016, 59, 671–681. [Google Scholar] [CrossRef] [Green Version]
- Abdoli-E, M.; Agnew, M.J.; Stevenson, J.M. An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks. Clin. Biomech. 2006, 21, 456–465. [Google Scholar] [CrossRef]
- Kawamoto, H.; Sankai, Y. Power assist method based on phase sequence and muscle force condition for HAL. Adv. Robot. 2005, 19, 717–734. [Google Scholar] [CrossRef]
- Toxiri, S.; Koopman, A.S.; Lazzaroni, M. Rationale, implementation and evaluation of assistive strategies for an active back-support exoskeleton. Front. Robot. AI 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- ISO 13482:2014. Robotics. Robots and Robotic Devices. Safety Requirements for Personal care Robots; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Waters, T.R.; Putz-Anderson, V.; Garg, A.; Fine, L.J. Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 1993, 36, 749–776. [Google Scholar] [CrossRef]
- van Dieën, J.H.; Selen, L.P.J.; Cholewicki, J. Trunk muscle activation in low-back pain patients, an analysis of the literature. J. Electromyogr. Kinesiol. 2003, 13, 333–351. [Google Scholar] [CrossRef]
- Johanson, E.; Brumagne, S.; Janssens, L. The effect of acute back muscle fatigue on postural control strategy in people with and without recurrent low back pain. Eur. Spine J. 2011, 20, 2152–2159. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.T.; Fung, P.K.; Ng, N.Y. Dynamic changes of elasticity, cross-sectional area, and fat infiltration of multifidus at different postures in men with chronic low back pain. Spine J. 2012, 12, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Nabeshima, C.; Ayusawa, K.; Hochberg, C.; Yoshida, E. Standard performance test of wearable robots for lumbar support. IEEE Robot. Autom. Lett. 2018, 3, 2182–2189. [Google Scholar] [CrossRef]
- JIS B 8456-1:2017. Personal Care Robots, Part 1: Physical Assistant Robots for Lumbar Support; Japanese Standards Association: Tokyo, Japan, 2017. (In Japanese) [Google Scholar]
- Potvin, J.R. Use of NIOSH equation inputs to calculate lumbosacral compression forces. Ergonomics 1997, 40, 691–707. [Google Scholar] [CrossRef]
- Merryweather, A.S.; Loertscher, M.C.; Bloswick, D.S. A revised back compressive force estimation model for ergonomic evaluation of lifting tasks. Work 2009, 34, 263–272. [Google Scholar] [CrossRef]
- van Dieën, J.H.; Faber, G.S.; Loos, R.C.; Kuijer, P.P.F.; Kingma, I.; van der Molen, H.F.; Frings-Dresen, M.H. Validity of estimates of spinal compression forces obtained from worksite measurements. Ergonomics 2010, 53, 792–800. [Google Scholar] [CrossRef]
- Chaffin, D.B.; Andersson, G.; Martin, B.J. Occupational Biomechanical Models. In Occupational Biomechanics; John Wiley & Sons: Chicago, IL, USA, 2006; pp. 133–134. [Google Scholar]
- Hof, A.L. An explicit expression for the moment in multibody systems. J. Biomech. 1992, 25, 1209–1211. [Google Scholar] [CrossRef]
- Kingma, I.; De Looze, M.P.; Toussaint, H.M. Validation of a full body 3-D dynamic linked segment model. Hum. Mov. Sci. 1996, 15, 833–860. [Google Scholar] [CrossRef]
- Chaffin, D.B.; Baker, W.H. A biomechanical model for analysis of symmetric sagittal plane lifting. AIIE Trans. 1970, 2, 16–27. [Google Scholar] [CrossRef]
- McGill, S.M.; Norman, R.W. Effects of an anatomically detailed erector spinae model on L4L5 disc compression and shear. J. Biomech. 1987, 20, 591–600. [Google Scholar] [CrossRef]
- Rajaee, M.A.; Arjmand, N.; Shirazi-Adl, A.; Plamondon, A.; Schmidt, H. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities. Appl. Ergon. 2015, 48, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Marras, W.S.; Davis, K.G.; Kirking, B.C.; Bertsche, P.K. A comprehensive analysis of low-back disorder risk and spinal loading during the transferring and repositioning of patients using different techniques. Ergonomics 1999, 42, 904–926. [Google Scholar] [CrossRef]
- Endo, Y.; Tada, M.; Mochimaru, M. Dhaiba: Development of virtual ergonomic assessment system with human models. In Proceedings of the 3rd International Digital Human Symposium, Tokyo, Japan, 20–22 May 2014. [Google Scholar]
- Imamura, Y.; Ayusawa, K.; Endo, Y.; Yoshida, E. Simulation-based design for robotic care device: Optimizing trajectory of transfer support robot. In Proceedings of the ICORR 2017–15th IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017. [Google Scholar]
- McGill, S.M.; Norman, R.W.; Cholewicki, J. A simple polynomial that predicts low-back compression during complex 3-D tasks. Ergonomics 1996, 39, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Granata, K.P.; Marras, W.S. An EMG-assisted model of trunk loading during free-dynamic lifting. J. Biomech. 1995, 28, 1309–1317. [Google Scholar] [CrossRef]
- Jäger, M.; Luttmann, A.; Göllner, R.; Laurig, W. “The Dortmunder”-Biomechanical Model for Quantification and Assessment of the Load on the Lumbar Spine. SAE Trans. 2001, 2163–2171. [Google Scholar]
- Nachemson, A.L.F.; Morris, J.M. In vivo measurements of intradiscal pressure: Discometry, a method for the determination of pressure in the lower lumbar discs. JBJS 1964, 46, 1077–1092. [Google Scholar] [CrossRef]
- Wilke, H.J.; Neef, P.; Caimi, M.; Hoogland, T.; Claes, L.E. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999, 24, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Kikuchi, S.; Yonezawa, T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 1999, 24, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, I.; Kikuchi, S.I.; Sato, K.; Sato, N. Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study. Spine 2006, 31, 18–23. [Google Scholar] [CrossRef]
- Putzer, M.; Ehrlich, I.; Rasmussen, J.; Gebbeken, N.; Dendorfer, S. Sensitivity of lumbar spine loading to anatomical parameters. J. Biomech. 2016, 49, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.G.; Mary, L.B.; Anderso, D.E. Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J. Biomech. Eng. 2015, 137, 1–10. [Google Scholar] [CrossRef]
- Dreischarf, M.; Rohlmann, A.; Zhu, R.; Schmidt, H.; Zander, T. Is it possible to estimate the compressive force in the lumbar spine from intradiscal pressure measurements? A finite element evaluation. Med. Eng. Phys. 2013, 35, 1385–1390. [Google Scholar] [CrossRef]
- Henninger, H.B.; Reese, S.P.; Anderson, A.E.; Weiss, J.A. Validation of computational models in biomechanics. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 801–812. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Dolan, P.; Luo, J.; Pollintine, P.; Landham, P.R. Intervertebral disc decompression following endplate damage: Implications for disc degeneration depend on spinal level and age. Spine 2013, 38, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Cabello, J.; Cavanilles-Walker, J.M.; Iborra, M.; Ubierna, M.T.; Covaro, A.; Roca, J. The protective role of dynamic stabilization on the adjacent disc to a rigid instrumented level. An in vitro biomechanical analysis. Arch. Orthop. Trauma Surg. 2013, 133, 443–448. [Google Scholar] [CrossRef]
- Yonezawa, T. Development and clinical application of an intradiscal pressure sensor. Biomed. Eng. 1997, 35, 249–253. (In Japanese) [Google Scholar]
- van Dieën, J.H.; Kingma, I. Effects of antagonistic co-contraction on differences between electromyography based and optimization based estimates of spinal forces. Ergonomics 2005, 48, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Bogduk, N.; Macintosh, J.E.; Pearcy, M.J. A universal model of the lumbar back muscles in the upright position. Ergonomics 1992, 17, 897–913. [Google Scholar] [CrossRef]
- Kumar, S. Moment arms of spinal musculature determined from CT scans. Clin. Biomech. 1988, 3, 137–144. [Google Scholar] [CrossRef]
- McGill, S.M.; Patt, N.; Norman, R.W. Measurement of the trunk musculature of active males using ct scan radiography: Implications for force and moment generating capacity about the l4l5 joint. J. Biomech. 1988, 21, 329–341. [Google Scholar] [CrossRef]
- Nèmeth, G.; Ohlsèn, H. Moment arm lengths of trunk muscles to the lumbosacral joint obtained in vivo with computed tomography. Spine 1986, 11, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Daggfeldt, K.; Thorstensson, A. The mechanics of back-extensor torque production about the lumbar spine. J. Biomech. 2003, 36, 815–825. [Google Scholar] [CrossRef]
- McGill, S.M. A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending. J. Biomech. 1992, 25, 395–414. [Google Scholar] [CrossRef]
- Cholewicki, J.; McGill, S.M. Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clin. Biomech. 1996, 11, 1–15. [Google Scholar] [CrossRef]
- Stokes, I.A.; Gardner-Morse, M. Quantitative anatomy of the lumbar musculature. J. Biomech. 1999, 32, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Wilke, H.J.; Neef, P.; Hinz, B.; Seidel, H.; Claes, L. Intradiscal pressure together with anthropometric data–a data set for the validation of models. Clin. Biomech. 2001, 16, S111–S126. [Google Scholar] [CrossRef]
- Kankaanpää, M.; Taimela, S.; Laaksonen, D.; Hënninen, O.; Airaksinen, O. Back and hip extensor fatigability in chronic low back pain patients and controls. Arch. Phys. Med. Rehabil. 1998, 79, 412–417. [Google Scholar] [CrossRef]
- Kudo, N.; Yamada, Y.; Ito, D. Age-related injury risk curves for the lumbar spine for use in low-back-pain prevention in manual handling tasks. Robomech. J. 2016, 6, 12. [Google Scholar] [CrossRef]
- Hibbs, A.E.; Thompson, K.G.; French, D.N.; Hodgson, D.; Spears, I.R. Peak and average rectified EMG measures: Which method of data reduction should be used for assessing core training exercises? J. Electromyogr. Kinesiol. 2011, 21, 102–111. [Google Scholar] [CrossRef]
Model | CF Simulator | Merryweather [16] | Potvin [15] |
---|---|---|---|
Type | Inverse dynamic model | Regression model | Regression model |
Conditions | Dynamic | Quasi-dynamic | Static |
Torso angles base line | C7/S1 in standing/flexion | Vertical and C7/S1 | C7/S1 and horizontal |
Researcher | Information | Disc Level | () | Postures | IDP () | CF (N) |
---|---|---|---|---|---|---|
Nachemson [30] | Two subjects 49–52 y 67–75 kg 163–175 cm | L4/L5 | 19.7 | Standing | 0.60 * | 780 |
Wilke [31] | One subject 45 y 70 kg 168 cm | L4/L5 | 18 | Standing Forward flexion at 36 Standing (19.8 kg) lifting (19.8 kg) | 0.5 1.08 1 2.3 | 594 1283 1188 2732 |
Sato [32] | Eight subjects 22–29 y 60–90 kg 166–181cm | L4/L5 | 15.9 | Standing Forward flexion at 30 | 0.53 1.32 | 556 1385 |
Takahashi [33] | Three subjects 24–26 y 70–77 kg 170–180 cm | L4/L5 | 19.1 | Standing Forward flexion at 30 Standing (10 kg) Forward flexion (10 kg) | 0.34 1.21 0.416 1.46 | 556 1385 428 1525 |
N = 10 | Increment of the CF at L5/S1 (N/deg) | ||
---|---|---|---|
Angle range () | AR1 (from 0 to 10) | AR2 (from 10 to 20) | AR3 (from 20 to 30) |
Invasive measurement | 49.0 | 26.6 | 11.5 |
CF simulator | 42.5 | 40.3 | 30.2 |
Merryweather [16] | 35.0 | 37.2 | 31.5 |
Potvin [15] | 34.0 | 30.3 | 27.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, X.; Yamada, Y.; Akiyama, Y.; Tao, Z.; Kudo, N. Validation of Lumbar Compressive Force Simulation in Forward Flexion Condition. Appl. Sci. 2021, 11, 726. https://doi.org/10.3390/app11020726
Xiang X, Yamada Y, Akiyama Y, Tao Z, Kudo N. Validation of Lumbar Compressive Force Simulation in Forward Flexion Condition. Applied Sciences. 2021; 11(2):726. https://doi.org/10.3390/app11020726
Chicago/Turabian StyleXiang, Xiaohan, Yoji Yamada, Yasuhiro Akiyama, Ziliang Tao, and Naoki Kudo. 2021. "Validation of Lumbar Compressive Force Simulation in Forward Flexion Condition" Applied Sciences 11, no. 2: 726. https://doi.org/10.3390/app11020726
APA StyleXiang, X., Yamada, Y., Akiyama, Y., Tao, Z., & Kudo, N. (2021). Validation of Lumbar Compressive Force Simulation in Forward Flexion Condition. Applied Sciences, 11(2), 726. https://doi.org/10.3390/app11020726