Monitoring the Antibacterial Effect of Rosin Acids in an Austrian Beet Sugar Plant by Amplicon-Based Sequencing and Flow Cytometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Setup
2.2. DNA Isolation
2.3. Amplicon-Based Metagenomic Sequencing (Illumina MiSeq) and Metagenomic Data Processing
2.4. Live/Dead Quantification of Bacteria by Flow Cytometry
2.5. Mini-Fermenter Trial Setup
2.6. Statistical Analyses
3. Results and Discussion
3.1. Identification of Microorganisms in the Extraction Area and Juice Purification
3.2. Industrial-Scale Application of a Rosin Acid-Based Product in the Extraction Area
3.3. Lab Scale Trials Using a Rosin Acid-Based Product
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Poel, P.W. Zuckertechnologie. Rüben- und Rohrzuckergewinnung; Dr. Albert Bartens KG: Berlin, Germany, 2000. [Google Scholar]
- Klaushofer, H.; Clarke, M.A.; Rein, P.W.; Mauch, W. Mikrobiologie. In Zuckertechnologie. Rüben- und Rohrzuckergewinnung; Van der Poel, P.W., Schiweck, H., Schwartz, T., Eds.; Dr. Albert Bartens KG: Berlin, Germany, 2000. [Google Scholar]
- Krüger, W. Über Infektion und Zuckerverlust im Diffusionsturm. In Proceedings of the Commission Internationale Technique de Sucrerie, Frankfurt, Germany, 26 October 1957; pp. 191–195. [Google Scholar]
- Bidan, P.; Blanchet, M.; Genotelle, J. Evaluation expérimentale des pertes de sucre d’origine microbienne en diffusion. Industr. Alim. Agr. 1963, 80, 717–720. [Google Scholar]
- Hollaus, F. Eine einfache Methode zur quantitativen Bestimmung mikrobieller Stoffumsetzungen mittels Objektträgerkulturen. Ernährung/Nutrition 1978, 2, 196–198. [Google Scholar]
- Klaushofer, H.; Hollaus, F. Zur Taxonomie der hochthermophilen, in Zuckerfabriksäften vorkommenden aeroben Sporenbildner. Sugar Ind. 1970, 20, 465–470. [Google Scholar]
- Belamri, M.; Mekkaoui, A.K.; Tantaoui-Elaraki, A. Saccharolytic bacteria in beet juices. Int. Sugar J. 1991, 93, 210–212. [Google Scholar]
- Robles-Gancedo, S.; Lopez-Diaz, T.M.; Otero, A. Microbiological counts during beet sugar extraction. J. Food Prot. 2009, 72, 1332–1337. [Google Scholar] [CrossRef]
- Juste, A.; Thomma, B.P.; Lievens, B. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol. 2008, 25, 745–761. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in Chemical and Biological Methods to Identify Microorganisms-From Past to Present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Justé, A.; Krause, M.S.; Lievens, B.; Klingeberg, M.; Michiels, C.W.; Willems, K.A. Protective effect of hop β-acids on microbial degradation of thick juice during storage. J. Appl. Microbiol. 2008, 104, 51–59. [Google Scholar] [CrossRef]
- Robles-Gancedo, S.; López-Díaz, T.M.; Otero, A. Identification of main bacteria and fungi found during beet sugar extraction in Spanish factories. Int. Sugar J. 2014, 116, 29. [Google Scholar]
- Kohout, C.K.; Ukowitz, C.; Reiter, D.; Zitz, U.; Moder, K.; Emerstorfer, F.; Hein, W.; Kneifel, W.; Domig, K.J. Bacterial growth dynamics and corresponding metabolite levels in the extraction area of an Austrian sugar beet factory using antimicrobial treatment. J. Sci. Food Agric. 2020, 100, 2713–2721. [Google Scholar] [CrossRef]
- Díaz, M.; Herrero, M.; García, L.A.; Quirós, C. Application of flow cytometry to industrial microbial bioprocesses. Biochem. Eng. J. 2010, 48, 385–407. [Google Scholar] [CrossRef]
- Longin, C.; Petitgonnet, C.; Guilloux-Benatier, M.; Rousseaux, S.; Alexandre, H. Application of flow cytometry to wine microorganisms. Food Microbiol. 2017, 62, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Guevara, L.; Palop, A.; Tabera, J.; Fernández, P.S. Determination of the effect of plant essential oils obtained by supercritical fluid extraction on the growth and viability of Listeria monocytogenes in broth and food systems using flow cytometry. LWT 2009, 42, 220–227. [Google Scholar] [CrossRef]
- Pollach, G.; Hein, W.; Beddie, D. Application of hop-β-acids and rosin acids in the sugar industry. Sugar Ind. 2002, 127, 921–930. [Google Scholar]
- Hein, W.; Pollach, G.; Emerstorfer, F. 10 years’ experience with natural antibacterials within Agrana. Sugar Ind. 2006, 131, 477–491. [Google Scholar]
- Andrews, S. Fast QC. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 28 June 2019).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 3. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 2016, 081257. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UNBIAS: An attempt to correct abundance bias in 16S sequencing, with limited success. BioRxiv 2017, 124149. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UNCROSS2: Identification of cross-talk in 16S rRNA OTU tables. BioRxiv 2018, 400762. [Google Scholar] [CrossRef]
- Edgar, R.C. SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv 2016, 074161. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. Spec. Publ. 2013, 42, D633–D642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive metagenomic visualization in a Web browser. BMC Bioinf. 2011, 12, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sheng, H.F.; He, Y.; Wu, J.Y.; Jiang, Y.X.; Tam, N.F.; Zhou, H.W. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 2012, 78, 8264–8271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Hu, X.-S. Hubbell’s fundamental biodiversity parameter and the Simpson diversity index. Ecol. Lett. 2005, 8, 386–390. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, N.; Lu, X.; Zheng, Z.; Zhang, M.; Qiao, X. Characterization of microbial community structure and metabolic potential using Illumina MiSeq platform during the black garlic processing. Food Res. Int. 2018, 106, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Bensch, G.; Rüger, M.; Wassermann, M.; Weinholz, S.; Reichl, U.; Cordes, C. Flow cytometric viability assessment of lactic acid bacteria starter cultures produced by fluidized bed drying. Appl. Microbiol. Biotechnol. 2014, 98, 4897–4909. [Google Scholar] [CrossRef]
- Dr. Müller Gerätebau GmbH. Gebrauchsanweisung—Super GL Compact; Dr. Müller Gerätebau GmbH: Freital, Germany, 2011; Version 2.0; pp. 1–50. [Google Scholar]
- Steven, B.; Chen, M.Q.; Greer, C.W.; Whyte, L.G.; Niederberger, T.D. Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost. Int. J. Syst. Evol. Microbiol. 2008, 58, 1497–1501. [Google Scholar] [CrossRef] [Green Version]
- Abriouel, H.; Benomar, N.; Huch, M.; Franz, C.M.A.P.; Gálvez, A. The genera Bacillus, Geobacillus and Halobacillus. In Lactic Acid Bacteria: Biodiversity and Taxonomy; Holzapfel, W.H., Wood, B.J.B., Eds.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Bosma, E.F.; Koehorst, J.J.; van Hijum, S.A.; Renckens, B.; Vriesendorp, B.; van de Weijer, A.H.; Schaap, P.J.; de Vos, W.M.; van der Oost, J.; van Kranenburg, R. Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216(T). Stand. Genom. Sci. 2016, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Fortina, M.G.; Mora, D.; Schumann, P.; Parini, C.; Manachini, P.L.; Stackebrandt, E. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. Int. J. Syst. Evol. Microbiol. 2001, 51, 2063–2071. [Google Scholar] [CrossRef] [Green Version]
- Poli, A.; Romano, I.; Caliendo, G.; Nicolaus, G.; Orlando, P.; de Falco, A.; Lama, L.; Gambacorta, A.; Nicolaus, B. Geobacillus toebil subsp. decanicus subsp. nov., a hydrocarbon-degrading, heavy metal resistant bacterium from hot compost. J. Gen. Appl. Microbiol. 2006, 52, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, M.-H.; Kim, H.; Bae, J.; Rhee, S.; Jeon, C.; Kim, K.; Kim, J.-J.; Hong, S.; Lee, S.-G.; Yoon, J.-W.; et al. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int. J. Syst. Evol. Microbiol. 2002, 52, 2251–2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, A.; Romano, I.; Cordella, P.; Orlando, P.; Nicolaus, B.; Ceschi Berrini, C. Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 2009, 13, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, Y.; Saito, R.; Furuya, H.; Ishihara, D.; Sahara, T.; Kimura, N.; Nishino, T.; Tsuruoka, N.; Shigeri, Y.; Watanabe, K. Caenibacillus caldisaponilyticus gen. nov., sp. nov., a thermophilic, spore-forming and phospholipid-degrading bacterium isolated from acidulocompost. Int. J. Syst. Evol. Microbiol. 2016, 66, 2684–2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björkroth, J.; Dicks, L.M.T.; Endo, A.H. The genus Leuconostoc. In Lactic Acid Bacteria: Biodiversity and Taxonomy; Holzapfel, W.H., Wood, B.J.B., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 391–404. [Google Scholar]
- Endo, A.; Dicks, L.M.T. The genus Fructobacillus. In Lactic Acid Bacteria: Biodiversity and Taxonomy; Holzapfel, W.H., Wood, B.J.B., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 381–390. [Google Scholar]
- Pot, B.; Felis, G.E.; De Bruyne, K.; Tsakalidou, E.; Papadimitriou, K.; Leisner, J.; Vandamme, P. The genus Lactobacillus. In Lactic Acid Bacteria: Biodiversity and Taxonomy; Holzapfel, W.H., Wood, B.J.B., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 249–354. [Google Scholar]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kawamura, Y.; Fujiwara, N.; Naka, T.; Liu, H.; Huang, X.; Kobayashi, K.; Ezaki, T. Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int. J. Syst. Evol. Microbiol. 2004, 54, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Hirose, T.; Yokota, A. Four novel Arthrobacter species isolated from filtration substrate. Int. J. Syst. Evol. Microbiol. 2009, 59, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Coenye, T.; Goris, J.; De Vos, P.; Vandamme, P.; LiPuma, J.J. Classification of Ralstonia pickettii-like isolates from the environment and clinical samples as Ralstonia insidiosa sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 1075–1080. [Google Scholar] [CrossRef]
- Coenye, T.; Laevens, S.; Willems, A.; Ohlen, M.; Hannant, W.; Govan, J.R.; Gillis, M.; Falsen, E.; Vandamme, P. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int. J. Syst. Evol. Microbiol. 2001, 51, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Coenye, T.; Vandamme, P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 2003, 5, 719–729. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, L.; Bricio, C.; Blesa, A.; Hidalgo, A.; Berenguer, J. Transferable denitrification capability of Thermus thermophilus. Appl. Environ. Microbiol. 2014, 80, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollaus, F.; Hein, W.; Pollach, G.; Scheberl, A.; Messner, P. Nitrit formation in the thin juice by Thermus species. Sugar Ind. 1997, 122, 365–369. [Google Scholar]
- Beffa, T.; Blanc, M.; Lyon, P.; Vogt, G.; Marchiani, M.; Fischer, J.; Aragno, M. Isolation of Thermus Strains from Hot Composts (60 to 80 °C). Appl. Environ. Microbiol. 1996, 62, 1723–1727. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Yang, H.; Zhang, T.; Sun, J.; Lou, K. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl. Environ. Microbiol. 2014, 98, 6375–6385. [Google Scholar] [CrossRef] [PubMed]
- Nemec, A. Leistungsspezifische Charakterisierung von Schwachsaurem Kationentauscherharz in Verschiedenen Medien. Bachelor’s Thesis, Universität für Bodenkultur, Vienna, Austria, 2018. [Google Scholar]
- Madritsch, S.; Bomers, S.; Posekany, A.; Gurg, A.; Birke, R.; Emerstorfer, F.; Turetschek, R.; Otte, S.; Eigner, H.; Sehr, E.M. Integrative transcriptomics reveals genotypic impact on sugar beet storability. Plant. Mol. Biol. 2020, 104, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Kenter, C.; Hoffmann, C.M. Changes in the processing quality of sugar beet (Beta vulgaris L.) during long-term storage under controlled conditions. Int. J. Food. Sci. Technol. 2009, 44, 910–917. [Google Scholar] [CrossRef]
- Abraham, K.; Flöter, E. New approaches for the determination of dextran in the sugar production process. Sugar Ind. 2018, 143, 1–9. [Google Scholar] [CrossRef]
- Pollach, G.; Hein, W. Method for Producing Sugar by Aid of Resins. Austria Patent 1,282,731B1, 19 April 2006. [Google Scholar]
- Emerstorfer, F.; Kneifel, W.; Hein, W. The role of plant-based antimicrobials in food and feed production with special regard to silage fermentation. Bodenkultur 2009, 60, 55–65. [Google Scholar]
- Bubnik, Z.; Kadlec, P.; Urban, D.; Bruhns, M. Sugar Technologists Manual; Dr. Albert Bartens KG: Berlin, Germany, 1995; Volume 8. [Google Scholar]
Periods | Process Stage | Sampling Points | Reads | OTU | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rosin Acid | No Treatment | Rosin Acid | No Treatment | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
November | Extraction | Fresh water | 12,228.00 | * | 15,911 | * | 4 | * | 9 | * |
Press water | 15,090.50 | 10,115.16 | 3251.5 | 2305.88 | 16 | 1.41 | 11 | 1.41 | ||
Juice of mid-tower 1 | 26,274.50 | 2267.69 | 19095 | 24,744.49 | 13 | 0.00 | 3.5 | 2.12 | ||
Juice of mid-tower 2 | 15,928.00 | 21,374.42 | 24,194.5 | 6767.72 | 12.5 | 0.71 | 2.5 | 0.71 | ||
Tower juice 1 | 18,143.50 | 2551.95 | 12,786 | * | 13 | 1.41 | 12 | * | ||
Tower juice 2 | 26,064.50 | 8954.09 | 12,136.5 | 692.26 | 19 | 1.41 | 9.5 | 4.95 | ||
Cossette-juice mixture 1 | 15,843.00 | 3358.76 | 5182 | 6313.05 | 13.5 | 3.54 | 9 | 1.41 | ||
Cossette-juice mixture 2 | 30,421.00 | 12,539.83 | 6596 | 9277.24 | 32 | 12.73 | 10 | 9.90 | ||
Raw juice | 3726.00 | 3445.02 | 10,562.5 | 8495.89 | 55 | 8.49 | 25 | 24.04 | ||
Juice purification | Hard juice | 178,524.00 | 28,550.14 | 173,944 | 15,253.71 | 1 | 0.00 | 21 | 4.24 | |
Thin juice | 119,452.00 | 22,429.43 | 124,578 | 6853.28 | 1.5 | 0.71 | 1 | 0.00 | ||
Eluat before UV | 18,015.00 | * | 15,325.5 | 4868.43 | 4 | * | 4 | 0.00 | ||
Eluat after UV | 14,614.50 | 211.42 | 22,596.5 | 11,916.87 | 4 | 0.00 | 4 | 0.00 | ||
December | Extraction | Fresh water | 43,396.50 | 35,391.40 | 12,021.5 | 3995.86 | 3.5 | 0.71 | 4 | 0.00 |
Press water | 9637.00 | 562.86 | 8569 | 1043.69 | 19.5 | 2.12 | 16.5 | 0.71 | ||
Juice of mid-tower 1 | 26,288.50 | 3160.06 | 27,570 | 6057.08 | 14 | 5.66 | 7.5 | 4.95 | ||
Juice of mid-tower 2 | 30,174.00 | * | 38,261.5 | 3270.37 | 13 | * | 2 | 0.00 | ||
Tower juice 1 | 13,319.00 | 3798.58 | 11,126.5 | 1731.70 | 31.5 | 24.75 | 11 | 0.00 | ||
Tower juice 2 | 15,014.50 | 7008.14 | 12,591 | 76.37 | 63.5 | 24.75 | 11 | 0.00 | ||
Cossette-juice mixture 1 | 8181.00 | 10,504.78 | 11,426.5 | 1997.58 | 64.5 | 40.31 | 15.5 | 4.95 | ||
Cossette-juice mixture 2 | 22,260.50 | 10,693.58 | 12,601 | 353.55 | 71 | 32.53 | 11 | 0.00 | ||
Raw juice | 22,420.50 | 5838.58 | 7326.5 | 2069.70 | 119.5 | 4.95 | 70 | 12.73 | ||
Juice purification | Hard juice | 143,327.00 | 10,534.48 | 123,280.5 | 84,686.64 | 18 | 14.14 | 19.5 | 4.95 | |
Thin juice | 145,599.00 | 2979.75 | 126,441 | 4167.69 | 1 | 0.00 | 1 | 0.00 | ||
Eluat before UV | 70,983.50 | 86,489.77 | 208,905.5 | 100,409.87 | 6 | 2.83 | 8.5 | 2.12 | ||
Eluat after UV | 104,739.00 | * | 42,854 | 28,629.34 | 6 | * | 7 | 2.83 | ||
January | Extraction | Fresh water | 10,228.00 | * | 43,980 | 34,129.22 | 4 | * | 21 | 24.04 |
Press water | 11,162.50 | 3650.79 | 9279.5 | 1177.33 | 18.5 | 2.12 | 14 | 0.00 | ||
Juice of mid-tower 1 | 18,860.50 | 10,550.74 | 36,115.5 | 1593.11 | 11.5 | 3.54 | 12.5 | 3.54 | ||
Juice of mid-tower 2 | 1852.50 | 1697.76 | 32,030 | 4236.98 | 29.5 | 6.36 | 9 | 4.24 | ||
Tower juice 1 | 15,531.50 | 4796.31 | 26,656 | 11,820.00 | 88 | 1.41 | 13 | 2.83 | ||
Tower juice 2 | 20,088.00 | 12,682.67 | 17,257 | 415.78 | 116.5 | 4.95 | 14 | 1.41 | ||
Cossette-juice mixture 1 | 25,381.50 | 6385.88 | 14,483 | 2616.30 | 99 | 7.07 | 17 | 2.83 | ||
Cossette-juice mixture 2 | 19,220.50 | 12,271.84 | 28,385 | 11,631.91 | 114 | 4.24 | 18.5 | 2.12 | ||
Raw juice | 79,043.50 | 47,853.45 | 24,697 | 7937.98 | 94.5 | 17.68 | 98 | 16.97 | ||
Juice purification | Hard juice | 181,206.50 | 16,917.53 | 198,801 | 30,549.84 | 27.5 | 9.19 | 21.5 | 3.54 | |
Thin juice | 91,786.00 | 20,605.09 | 109,973 | 5115.21 | 1 | 0.00 | 1 | 0.00 | ||
Eluat before UV | 10,240.00 | 1012.58 | 17,774.5 | 9613.12 | 4 | 0.00 | 10.5 | 9.19 | ||
Eluat after UV | 27,725.00 | * | 11,998.5 | 4780.75 | 4 | * | 4 | 0.00 |
Genus | Family | Order | Class | Phylum | Gram Stain | Growth Temperature | Relation to Oxygen | Spore Former | Sample Point | Literature |
---|---|---|---|---|---|---|---|---|---|---|
Tumebacillus | Alicyclobacillaceae | Bacillales | Bacilli | Firmicutes | positive | 5–37 °C | aerobic | + | 2 | [33] |
Bacillus | Bacillaceae | Bacillales | Bacilli | Firmicutes | positive | 35–50 °C | aerobic or microaerophilic | + | 2 | [34] |
Bacillus | Bacillaceae | Bacillales | Bacilli | Firmicutes | positive | 25–65 °C | facultatively anaerobic | + | 2 | [35] |
Geobacillus | Bacillaceae | Bacillales | Bacilli | Firmicutes | positive | 42–70 °C | anaerobic | + | 5.1; 5.2; 4.1; 4.2 | [34,36] |
Geobacillus | Bacillaceae | Bacillales | Bacilli | Firmicutes | positive | 45–70 °C | aerobic | + | 5.1; 5.2; 4.1; 4.2 | [34,37,38] |
Anoxybacillus | Bacillaceae | Bacillales | Bacilli | Firmicutes | positive | 55–67 °C | aerobic | + | 5.1; 5.2; 4.1; 4.2 | [39] |
Caenibacillus | Sporolacto-bacillaceae | Bacillales | Bacilli | Firmicutes | positive | 40–65 °C | aerobic | + | 3.1; 3.2; 4.1; 4.2 | [40] |
Leuconostoc | Leuconostocaceae | Lactobacillales | Bacilli | Firmicutes | positive | 20–30 °C | anaerobic | − | 6 | [41] |
Leuconostoc | Leuconostocaceae | Lactobacillales | Bacilli | Firmicutes | positive | 20–30 °C | anaerobic | − | 6 | [41] |
Leuconostoc | Leuconostocaceae | Lactobacillales | Bacilli | Firmicutes | positive | 20–30 °C | anaerobic | − | 6 | [41] |
Leuconostoc | Leuconostocaceae | Lactobacillales | Bacilli | Firmicutes | positive | 20–30 °C | anaerobic | − | 6 | [41] |
Fructobacillus | Leuconostocaceae | Lactobacillales | Bacilli | Firmicutes | positive | 20–30 °C | aerobic | − | 6 | [42] |
Lactobacillus | Lactobacillaceae | Lactobacillales | Bacilli | Firmicutes | positive | at 45 °C, not at 15 °C | anaerobic | − | 3.1 | [43] |
Lactobacillus | Lactobacillaceae | Lactobacillales | Bacilli | Firmicutes | positive | at 45 °C, not at 15 °C | micro aerophilic | − | 2, 3.1 | [43] |
Lactobacillus | Lactobacillaceae | Lactobacillales | Bacilli | Firmicutes | positive | at 45 °C, not at 15 °C | anaerobic | − | 2; 6 | [43] |
Lactobacillus | Lactobacillaceae | Lactobacillales | Bacilli | Firmicutes | positive | at 45 °C, not at 15 °C | anaerobic | − | 2 | [43] |
Lactobacillus | Lactobacillaceae | Lactobacillales | Bacilli | Firmicutes | positive | at 37 °C | anaerobic | − | 6 | [44] |
Arthrobacter | Micrococcaceae | Actinomycetales | Actino-bacteria | Actinobacteria | positive | 30 °C | aerobic | − | 1; 9; 10 | [45,46] |
Ralstonia | Burkholderiaceae | Burkholderiales | Betaproteo-bacteria | Proteobacteria | negative | 28, 30 and 37 °C | aerobic | − | 1; 9; 10 | [47] |
Burkholderia | Burkholderiaceae | Burkholderiales | Betaproteo-bacteria | Proteobacteria | negative | 30 °C not at 42 °C | aerobic | − | 1; 7; 9; 10 | [48,49] |
Thermus | Thermaceae | Thermales | Deinococci | Deinococcus-Thermus | negative | 49–72 °C | facultatively anaerobic | − | 7; 8 | [50,51,52] |
Periods | Process Stage | Sampling Points | Bacterial Count (log10/mL) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rosin Acid | No Treatment | Rosin Acid | No Treatment | |||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
November | Extraction | Fresh water | 0.35 | * | 0.16 | * | 1.18 | * | 2.01 | * | 5.12 | 0.69 | 3.89 | 1.53 |
Press water | 0.34 | 0.07 | 0.51 | 0.08 | 1.48 | 0.10 | 1.17 | 0.12 | 6.08 | 0.10 | 6.04 | 0.15 | ||
Juice of mid-tower 1 | 0.57 | 0.20 | 0.68 | 0.09 | 0.92 | 0.43 | 0.58 | 0.22 | 6.80 | 0.70 | 6.46 | 0.22 | ||
Juice of mid-tower 2 | 0.44 | 0.38 | 0.74 | 0.01 | 1.35 | 1.04 | 0.43 | 0.00 | 6.63 | 0.74 | 6.52 | 0.28 | ||
Tower juice 1 | 0.88 | 0.05 | 0.88 | * | 0.35 | 0.13 | 0.34 | * | 5.96 | 0.87 | 6.82 | 0.21 | ||
Tower juice 2 | 0.68 | 0.41 | 0.93 | 0.09 | 0.67 | 0.77 | 0.22 | 0.26 | 5.79 | 0.86 | 5.91 | 0.11 | ||
Cossette-juice mixture 1 | 0.87 | 0.04 | 0.55 | 0.44 | 0.38 | 0.08 | 1.05 | 0.93 | 5.99 | 0.83 | 5.94 | 0.06 | ||
Cossette-juice mixture 2 | 0.65 | 0.36 | 0.61 | 0.34 | 0.75 | 0.56 | 0.74 | 0.43 | 5.89 | 0.78 | 5.81 | 0.02 | ||
Raw juice | 0.16 | 0.17 | 0.61 | 0.54 | 2.82 | 1.10 | 1.06 | 1.42 | 7.22 | 0.10 | 7.17 | 0.01 | ||
Juice purification | Hard juice | 1.00 | 0.00 | 0.95 | 0.04 | 0.00 | 0.00 | 0.18 | 0.12 | 5.25 | 0.53 | 3.70 | 0.26 | |
Thin juice | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.58 | 0.06 | 6.40 | 0.83 | ||
Eluat before UV | 0.39 | * | 0.38 | 0.02 | 1.11 | * | 1.13 | 0.04 | 4.59 | 0.16 | 4.05 | 0.89 | ||
Eluat after UV | 0.38 | 0.01 | 0.37 | 0.00 | 1.13 | 0.01 | 1.15 | 0.01 | 4.34 | 0.17 | 3.54 | 1.17 | ||
December | Extraction | Fresh water | 0.69 | 0.44 | 0.35 | 0.01 | 0.57 | 0.79 | 1.17 | 0.01 | 5.13 | 0.64 | 4.56 | 0.55 |
Press water | 0.17 | 0.05 | 0.20 | 0.01 | 2.13 | 0.21 | 1.90 | 0.05 | 5.96 | 0.18 | 5.83 | 0.21 | ||
Juice of mid-tower 1 | 0.66 | 0.06 | 0.65 | 0.12 | 0.72 | 0.20 | 0.68 | 0.34 | 6.11 | 0.30 | 5.98 | 0.16 | ||
Juice of mid-tower 2 | 0.42 | * | 0.73 | 0.01 | 1.09 | * | 0.44 | 0.01 | 6.24 | 0.26 | 5.72 | 0.08 | ||
Tower juice 1 | 0.88 | 0.04 | 0.84 | 0.01 | 0.43 | 0.21 | 0.46 | 0.02 | 5.11 | 0.15 | 5.58 | 0.13 | ||
Tower juice 2 | 0.82 | 0.02 | 0.86 | 0.03 | 0.68 | 0.09 | 0.40 | 0.08 | 4.99 | 0.15 | 5.59 | 0.19 | ||
Cossette-juice mixture 1 | 0.37 | 0.44 | 0.82 | 0.02 | 2.24 | 1.43 | 0.50 | 0.08 | 5.05 | 0.01 | 5.43 | 0.01 | ||
Cossette-juice mixture 2 | 0.51 | 0.11 | 0.86 | 0.01 | 1.32 | 0.30 | 0.39 | 0.02 | 5.49 | 0.61 | 5.66 | 0.12 | ||
Raw juice | 0.17 | 0.04 | 0.19 | 0.06 | 2.79 | 0.23 | 2.55 | 0.57 | 7.40 | 0.36 | 7.16 | 0.05 | ||
Juice purification | Hard juice | 0.82 | 0.16 | 0.79 | 0.03 | 0.42 | 0.31 | 0.53 | 0.04 | 4.18 | 0.83 | 3.43 | 0.10 | |
Thin juice | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.43 | 0.08 | 5.87 | 0.20 | ||
Eluat before UV | 0.52 | 0.23 | 0.52 | 0.07 | 0.90 | 0.38 | 0.90 | 0.26 | 4.81 | 0.22 | 4.33 | 0.22 | ||
Eluat after UV | 0.64 | * | 0.32 | 0.07 | 0.81 | * | 1.39 | 0.04 | 4.79 | 0.13 | 3.99 | 0.14 | ||
January | Extraction | Fresh water | 0.38 | * | 0.21 | 0.21 | 1.13 | * | 2.16 | 1.44 | 5.36 | 0.89 | 4.88 | 0.41 |
Press water | 0.18 | 0.06 | 0.28 | 0.03 | 2.06 | 0.21 | 1.59 | 0.08 | 6.11 | 0.06 | 6.14 | 0.17 | ||
Juice of mid-tower 1 | 0.48 | 0.22 | 0.55 | 0.12 | 1.08 | 0.39 | 0.99 | 0.32 | 5.95 | 0.07 | 4.69 | 2.64 | ||
Juice of mid-tower 2 | 0.12 | 0.05 | 0.73 | 0.00 | 2.58 | 0.31 | 0.48 | 0.02 | 5.64 | 0.01 | 6.31 | 0.21 | ||
Tower juice 1 | 0.65 | 0.11 | 0.68 | 0.32 | 1.32 | 0.36 | 0.63 | 0.46 | 5.27 | 0.11 | 5.31 | 0.33 | ||
Tower juice 2 | 0.18 | 0.24 | 0.87 | 0.06 | 3.36 | 1.56 | 0.38 | 0.16 | 5.34 | 0.05 | 5.58 | 0.02 | ||
Cossette-juice mixture 1 | 0.50 | 0.14 | 0.86 | 0.07 | 1.49 | 0.05 | 0.42 | 0.17 | 5.33 | 0.04 | 5.47 | 0.01 | ||
Cossette-juice mixture 2 | 0.25 | 0.33 | 0.65 | 0.28 | 3.07 | 1.94 | 0.75 | 0.44 | 5.46 | 0.02 | 5.61 | 0.02 | ||
Raw juice | 0.29 | 0.01 | 0.22 | 0.04 | 1.87 | 0.06 | 2.37 | 0.49 | 7.11 | 0.13 | 7.33 | 0.07 | ||
Juice purification | Hard juice | 0.91 | 0.08 | 0.96 | 0.00 | 0.28 | 0.23 | 0.13 | 0.01 | 3.25 | 0.09 | 3.58 | 0.09 | |
Thin juice | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.60 | 0.26 | 5.29 | 0.57 | ||
Eluat before UV | 0.36 | 0.00 | 0.37 | 0.03 | 1.15 | 0.00 | 1.25 | 0.09 | 3.31 | 0.04 | 4.90 | 0.19 | ||
Eluat after UV | 0.37 | * | 0.37 | 0.00 | 1.13 | * | 1.13 | 0.01 | 2.62 | 0.52 | 4.58 | 0.01 |
Responses | N | n | Processing Periods (p-Values *) | Contrast Analysis: Significant Difference between | Treatments (p-Values *) | Sampling Points (p-Values *) |
---|---|---|---|---|---|---|
(log10) Bacterial Count | 78 | 2 | 0.0101 | November and January | 0.7794 | <0.0001 |
Simpson Index | 70 | 2 | 0.1506 | 0.0559 | <0.0001 | |
Shannon Index | 70 | 2 | 0.1528 | 0.0244 | 0.0006 | |
OTU Quantity | 70 | 2 | 0.0584 | November and January | 0.0007 | <0.0001 |
Treatment | Analyzed Parameter | Start | Start + 0.25 h | Start + 0.5 h | Start + 0.75 h | End |
---|---|---|---|---|---|---|
Rosin acids | L-Lactic acid (mg/L) | 586 ± 83 | 655 ± 73 | 676 ± 50 | 676 ± 47 | 956 ± 265 |
pH | 5.78 ± 0.01 | 5.66 ± 0.03 | 5.65 ± 0.04 | 5.65 ± 0.04 | 5.31 ± 0.21 | |
No treatment | L-Lactic acid (mg/L) | 681 ± 41 | 838± 108 | 966 ± 217 | 979 ± 222 | 1410 ± 219 |
pH | 5.78 ± 0.01 | 5.56 ± 0.19 | 5.45 ± 0.27 | 5.42 ± 0.28 | 4.99 ± 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moser, C.K.; Ukowitz, C.; Zitz, U.; Emerstorfer, F.; Hein, W.; Kneifel, W.; Domig, K.J. Monitoring the Antibacterial Effect of Rosin Acids in an Austrian Beet Sugar Plant by Amplicon-Based Sequencing and Flow Cytometry. Appl. Sci. 2021, 11, 737. https://doi.org/10.3390/app11020737
Moser CK, Ukowitz C, Zitz U, Emerstorfer F, Hein W, Kneifel W, Domig KJ. Monitoring the Antibacterial Effect of Rosin Acids in an Austrian Beet Sugar Plant by Amplicon-Based Sequencing and Flow Cytometry. Applied Sciences. 2021; 11(2):737. https://doi.org/10.3390/app11020737
Chicago/Turabian StyleMoser, Cordula K., Christina Ukowitz, Ulrike Zitz, Florian Emerstorfer, Walter Hein, Wolfgang Kneifel, and Konrad J. Domig. 2021. "Monitoring the Antibacterial Effect of Rosin Acids in an Austrian Beet Sugar Plant by Amplicon-Based Sequencing and Flow Cytometry" Applied Sciences 11, no. 2: 737. https://doi.org/10.3390/app11020737
APA StyleMoser, C. K., Ukowitz, C., Zitz, U., Emerstorfer, F., Hein, W., Kneifel, W., & Domig, K. J. (2021). Monitoring the Antibacterial Effect of Rosin Acids in an Austrian Beet Sugar Plant by Amplicon-Based Sequencing and Flow Cytometry. Applied Sciences, 11(2), 737. https://doi.org/10.3390/app11020737