Retrofitting Sea Cucumber Nursery Tanks to Recirculating Aquaculture Systems for Highly Intensive Litopenaeus vannamei Aquaculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elements of the Recirculating Aquaculture System (RAS)
2.2. Key Technologies of the RAS Applied to Litopenaeus Vannamei Culture
2.2.1. Sewage Collection and Aeration in Rectangular Aquaculture Tanks
2.2.2. Shrimp Shell, Dead Shrimp, and Sewage Removal Technology
2.2.3. Variable Flow Recirculating Aquaculture Technology
2.3. Litopenaeus vannamei Culture Process and System Management
2.3.1. Nursery Management and Culture in the RAS
2.3.2. Growth Indexes
2.3.3. Feeding Management
2.3.4. Water Quality Management
3. Results
3.1. Shrimp Growth
3.2. Changes in Water Quality Parameters during RAS Culture
3.3. Water Purification Performance of Biofilm and Pathogen Control
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- CSY. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2019; pp. 1–22. [Google Scholar]
- CSY. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2020; pp. 1–24. [Google Scholar]
- Cressey, D. Future Fish. Nature 2009, 458, 398–400. [Google Scholar] [CrossRef] [Green Version]
- Reid, B.; Arnold, C.R. The intensive culture of the penaeid shrimp Penaeus vannamei Boone in a recirculating raceway system. J. World Aquac. Soc. 1992, 23, 146–153. [Google Scholar] [CrossRef]
- Davis, D.A.; Arnold, C.R. The design, management and production of a recirculating raceway system for the production of marine shrimp. Aquac. Eng. 1998, 17, 193–211. [Google Scholar] [CrossRef]
- Yang, J.; Guan, C.; Song, H.; Liu, X.; Gu, Z.; Guo, Y. Design and test of mass balance-based recirculating aquaculture system for higher place shrimp pond. Trans. Chin. Soc. Agric. Eng. 2017, 33, 217–222, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Yang, H.; Liu, S.; You, K.; Zhang, F. Experimental study on the approprite breeding density for the production of prawn in closed-recirculating system. Trans. Chin. Soc. Agric. Eng. 2005, 21, 122–125, (In Chinese with English Abstract). [Google Scholar]
- Yang, J.; Ni, Q.; Zhang, Y.; Xu, B. Construction technology on RAS for shrimp culture. Trans. Chin. Soc. Agric. Eng. 2010, 26, 136–140, (In Chinese with English Abstract). [Google Scholar]
- Suantika, G.; Situmorang, M.L.; Kurniawan, J.B.; Pratiwi, S.A.; Aditiawati, P.; Astuti, D.I.; Azizah, F.F.N.; Djohan, Y.A.; Zuhri, U.; Simatupang, T.M. Development of a zero water discharge (ZWD)-Recirculating aquaculture system (RAS) hybrid system for super intensive white shrimp (Litopenaeus vannamei) culture under low salinity conditions and its industrial trial in commercial shrimp urban farming in Gresik, East Java, Indonesia. Aquac. Eng. 2018, 82, 12–24. [Google Scholar]
- Shi, Y.H.; Zhang, G.Y.; Liu, J.Z.; Zhu, Y.Z.; Xu, J.B. Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp growout systems. Bioresour. Technol. 2011, 102, 9416–9424. [Google Scholar] [CrossRef]
- Guan, C.; Liu, H.; Zhang, Y. Experimental study on breeding Litopenaeu vannamei in recirculating aquaculture system. Fish. Modern. 2010, 38, 24–29, (In Chinese with English Abstract). [Google Scholar]
- Fleckenstein, L.J.; Tierney, T.W.; Ray, A.J. Comparing biofloc, clear-water, and hybrid recirculating nursery systems (Part II): Tilapia (Oreochromis niloticus) production and water quality dynamics. Aquac. Eng. 2018, 82, 80–85. [Google Scholar] [CrossRef]
- Fleckenstein, L.J.; Tierney, T.W.; Fisk, J.C.; Ray, A.J. Effects of supplemental LED lighting on water quality and Pacific white shrimp (Litopenaeus vannamei) performance in intensive recirculating systems. Aquaculture 2019, 504, 219–226. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, Z.Q.; Zhang, L.; Jiang, Y.L.; Ge, H.X.; Song, X.F.; Chen, S.B.; Zhao, F.Z.; Li, J. Effects of water recirculation rate on the microbial community and water quality in relation to the growth and survival of white shrimp (Litopenaeus vannamei). BMC Microbiol. 2019, 19, 192. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Xu, J.; Wei, Y.; Sun, J. Establishing an eyeball-weight relationship for Litopenaeus vannamei using machine vision technology. Aquac. Eng. 2019, 87. [Google Scholar] [CrossRef]
- Du, Y.; Chen, F.; Zhou, L.; Qiu, T.; Sun, J. Effects of different layouts of fine-pore aeration tubes on sewage collection and aeration in rectangular water tanks. Aquac. Eng. 2020, 89, 102060. [Google Scholar] [CrossRef]
- Chen, F.; Du, Y.; Qiu, T.; Xu, Z.; Zhou, L.; Xu, J.; Sun, M.; Li, Y.; Sun, J. Design of an intelligent variable-flow recirculating aquaculture system based on machine learning methods. Appl. Sci. 2021, 11, 6546. [Google Scholar] [CrossRef]
- Ray, A.J.; Lotz, J.M. Shrimp (Litopenaeus vannamei) production and stable isotope dynamics in clear-water recirculating aquaculture systems versus biofloc systems. Aquac. Res. 2017, 48, 4390–4398. [Google Scholar] [CrossRef]
- Baron-Sevilla, B.; Buckle-Ramirez, L.F.; Hernandez-Rodriguez, M. Intensive culture of Litopenaeus vannamei Boone 1931, in a recirculating seawater system. Cienc. Mar. 2004, 30, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Sandifer, P.A.; Hopkins, J.S.; Stokes, A.D. Intensive culture potential of Penaeus vannamei. J. World Aquac. Soc. 1987, 18, 94–100. [Google Scholar] [CrossRef]
- Cohen, J.M.; Samocha, T.M.; Fox, J.M.; Gandy, R.L.; Lawrence, A.L. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquac. Eng. 2005, 32, 425–442. [Google Scholar] [CrossRef]
- Mishra, J.K.; Samocha, T.M.; Patnaik, S.; Speed, M.; Gandy, R.L.; Ali, A.M. Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquac. Eng. 2008, 38, 2–15. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Li, J.; Huang, G. The effects of body weight, temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whiteleg shrimp, Litopenaeus vannamei (Boone, 1931). Aquaculture 2006, 256, 579–587. [Google Scholar] [CrossRef]
- Moullac, G.L.; Haffner, P. Environmental factors affecting immune responses in Crustacea. Aquaculture 2000, 191, 121–131. [Google Scholar] [CrossRef]
- Ponce-Palafox, J.; Martinez-Palacios, C.A.; Ross, L.G. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture 1997, 157, 107–115. [Google Scholar] [CrossRef]
- Seidman, E.R.; Lawrence, A.L. Growth, feeding digestibility, and proximate body composition of juvenile Penaeus vannamei and Penaeus monodon grown at different dissolved oxygen levels. J. World Maric. Soc. 1985, 16, 333–346. [Google Scholar] [CrossRef]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y.; Chang, Y.F.; Chen, Y.M.; Shih, K.C. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ. Pollut. 2005, 134, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Bower, C.E.; Bidwell, J.P. Ionization of ammonia in seawater: Effects of temperature, pH and salinity. J. Fish. Res. Board Can. 1978, 35, 1012–1016. [Google Scholar] [CrossRef]
- Barajas, F.M.; Villegas, R.S.; Clark, G.P.; Mosqueda, J.G.; Moreno, B.L. Daily variation in short-term static toxicity of unionized ammonia in Litopenaeus vannamei (Boone) postlarvae. Aquac. Res. 2006, 37, 1406–1412. [Google Scholar] [CrossRef]
- Bauer, J.; Teitge, F.; Neffe, L.; Adamek, M.; Jung, A.; Peppler, C.; Steinhagen, D.; Jung-Schroers, V. Recommendations for identifying pathogenic Vibrio spp. as part of disease surveillance programmes in recirculating aquaculture systems for Pacific white shrimps (Litopenaeus vannamei). J. Fish Dis. 2018, 41, 1877–1897. [Google Scholar] [CrossRef]
- Pena, L.D.D.L.; Lavilla-Pitogo, C.R.; Paner, M.G. Luminescent vibrios associated with mortality in pond-cultured shrimp Penaeus monodon in the Philippines: Species Composition. Fish Pathol. 2001, 36, 133–138. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 1998, 166, 181–212. [Google Scholar] [CrossRef]
- Timmons, M.B.; Ebeling, J.M. Recirculating Aquaculture, 2nd ed.; Cayuga Aqua Ventures: Ithaca, NY, USA, 2007; pp. 275–314. [Google Scholar]
- Lin, Y.C.; Chen, J.C. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. J. Exp. Mar. Biol. Ecol. 2001, 259, 109–119. [Google Scholar] [CrossRef]
- Rusten, B.; Eikebrokk, B.; Ulgenes, Y.; Lygren, E. Design and operations of the Kaldnes moving bed biofilm reactors. Aquac. Eng. 2006, 34, 322–331. [Google Scholar] [CrossRef]
- Pfeiffer, T.J.; Wills, P.S. Evaluation of three types of structured floating plastic media in moving bed biofilters for total ammonia nitrogen removal in a low salinity hatchery recirculating aquaculture system. Aquac. Eng. 2011, 45, 51–59. [Google Scholar] [CrossRef]
- Frias-Espericueta, M.G.; Harfush-Melendez, M.; Páez-Osuna, F. Effects of ammonia on mortality and feeding of postlarvae shrimp Litopenaeus vannamei. Bull. Environ. Contam. Toxicol. 2000, 65, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Chen, J.C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 2003, 224, 193–201. [Google Scholar] [CrossRef]
- Menasueta, P.; Aranyakanonda, P.; Rungsupa, S.; Moree, N. Maturation and larviculture of Penaeid prawns in closed recirculating seawater systems. Aquac. Eng. 1989, 8, 357–368. [Google Scholar] [CrossRef]
Recirculating Pump | Liquid Oxygen | Ozone | |||||
---|---|---|---|---|---|---|---|
Time (d) | Recirculating Pump Frequency (Hz) | Time (d) | Flow Rate (m3/h) | Hours per Day (h/d) | Time (d) | Flow Rate (m3/h) | Hours per Day (h/d) |
0–20 | 26–30 | 0–20 | 0 | 0 | 0–15 | 0.2 | 4 |
21–30 | 30–40 | 21–40 | 0.2 | 24 h | 16–32 | 0.2 | 6 |
31–53 | 40–50 | 41–53 | 0.4 | 24 h | 33–53 | 0.4 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Xu, J.; Zhou, L.; Chen, F.; Qiu, T.; Sun, J. Retrofitting Sea Cucumber Nursery Tanks to Recirculating Aquaculture Systems for Highly Intensive Litopenaeus vannamei Aquaculture. Appl. Sci. 2021, 11, 9478. https://doi.org/10.3390/app11209478
Du Y, Xu J, Zhou L, Chen F, Qiu T, Sun J. Retrofitting Sea Cucumber Nursery Tanks to Recirculating Aquaculture Systems for Highly Intensive Litopenaeus vannamei Aquaculture. Applied Sciences. 2021; 11(20):9478. https://doi.org/10.3390/app11209478
Chicago/Turabian StyleDu, Yishuai, Jianping Xu, Li Zhou, Fudi Chen, Tianlong Qiu, and Jianming Sun. 2021. "Retrofitting Sea Cucumber Nursery Tanks to Recirculating Aquaculture Systems for Highly Intensive Litopenaeus vannamei Aquaculture" Applied Sciences 11, no. 20: 9478. https://doi.org/10.3390/app11209478
APA StyleDu, Y., Xu, J., Zhou, L., Chen, F., Qiu, T., & Sun, J. (2021). Retrofitting Sea Cucumber Nursery Tanks to Recirculating Aquaculture Systems for Highly Intensive Litopenaeus vannamei Aquaculture. Applied Sciences, 11(20), 9478. https://doi.org/10.3390/app11209478