fNIRS-QC: Crowd-Sourced Creation of a Dataset and Machine Learning Model for fNIRS Quality Control
Abstract
:Featured Application
Abstract
1. Introduction
Aim of This Study
2. Materials and Methods
2.1. Dataset
2.2. Web Interface
2.3. Collected Data and Processing
- Accept. The presented segment of a signal has a good quality, that is deemed acceptable by the user. This class was assigned a .
- Keep after correction. The portion is affected by noise or artifacts (e.g., spikes), but after applying appropriate signal processing methods to increase the signal to noise ratio and remove artifacts, the portion can likely be used for further analysis. This class was assigned a .
- Reject. The portion is very noisy or affected by artifacts that cannot be corrected using standard signal processing techniques. This class was assigned a .
2.4. Deep Learning Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yücel, M.A.; Lühmann, A.v.; Scholkmann, F.; Gervain, J.; Dan, I.; Ayaz, H.; Boas, D.; Cooper, R.J.; Culver, J.; Elwell, C.E.; et al. Best practices for fNIRS publications. Neurophotonics 2021, 8, 012101. [Google Scholar]
- Azhari, A.; Truzzi, A.; Neoh, M.J.Y.; Balagtas, J.P.M.; Tan, H.H.; Goh, P.P.; Ang, X.A.; Setoh, P.; Rigo, P.; Bornstein, M.H.; et al. A decade of infant neuroimaging research: What have we learned and where are we going? Infant Behav. Dev. 2020, 58, 101389. [Google Scholar] [CrossRef] [PubMed]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5. [Google Scholar] [CrossRef] [PubMed]
- Strother, S.C. Evaluating fMRI preprocessing pipelines. IEEE Eng. Med. Biol. Mag. 2006, 25, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Poldrack, R.A.; Fletcher, P.C.; Henson, R.N.; Worsley, K.J.; Brett, M.; Nichols, T.E. Guidelines for reporting an fMRI study. Neuroimage 2008, 40, 409–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hocke, L.M.; Oni, I.K.; Duszynski, C.C.; Corrigan, A.V.; Frederick, B.D.; Dunn, J.F. Automated Processing of fNIRS Data—A visual guide to the pitfalls and consequences. Algorithms 2018, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Gabrieli, G.; Scapin, G.; Bornstein, M.H.; Esposito, G. Are cry studies replicable? An analysis of participants, procedures, and methods adopted and reported in studies of infant cries. Acoustics 2019, 1, 866–883. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Clifford, G.D. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiol. Meas. 2012, 33, 1491. [Google Scholar] [CrossRef]
- Li, Q.; Rajagopalan, C.; Clifford, G.D. A machine learning approach to multi-level ECG signal quality classification. Comput. Methods Programs Biomed. 2014, 117, 435–447. [Google Scholar] [CrossRef]
- Gabrieli, G.; Balagtas, J.P.M.; Esposito, G.; Setoh, P. A Machine Learning approach for the automatic estimation of fixation-time data signals’ quality. Sensors 2020, 20, 6775. [Google Scholar] [CrossRef]
- Pollonini, L.; Olds, C.; Abaya, H.; Bortfeld, H.; Beauchamp, M.S.; Oghalai, J.S. Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy. Hear. Res. 2014, 309, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Pollonini, L.; Bortfeld, H.; Oghalai, J.S. PHOEBE: A method for real time mapping of optodes-scalp coupling in functional near-infrared spectroscopy. Biomed. Opt. Express 2016, 7, 5104–5119. [Google Scholar] [CrossRef] [Green Version]
- Sappia, M.S.; Hakimi, N.; Colier, W.N.; Horschig, J.M. Signal quality index: An algorithm for quantitative assessment of functional near infrared spectroscopy signal quality. Biomed. Opt. Express 2020, 11, 6732–6754. [Google Scholar] [CrossRef]
- Ortega, P.; Faisal, A.A. Deep learning multimodal fNIRS and EEG signals for bimanual grip force decoding. J. Neural Eng. 2021, 18, 0460e6. [Google Scholar] [CrossRef]
- Ma, T.; Chen, W.; Li, X.; Xia, Y.; Zhu, X.; He, S. fNIRS Signal Classification Based on Deep Learning in Rock-Paper-Scissors Imagery Task. Appl. Sci. 2021, 11, 4922. [Google Scholar] [CrossRef]
- Liu, R.; Reimer, B.; Song, S.; Mehler, B.; Solovey, E. Unsupervised fNIRS feature extraction with CAE and ESN autoencoder for driver cognitive load classification. J. Neural Eng. 2021, 18, 036002. [Google Scholar] [CrossRef] [PubMed]
- Saikia, M.J.; Brunyéa, T.T. K-means clustering for unsupervised participant grouping from fNIRS brain signal in working memory task. In Proceedings of the Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics, International Society for Optics and Photonics, Online. 6–12 March 2021; Volume 11629, p. 116292M. [Google Scholar]
- Sappia, M.S.; Hakimi, N.; Svinkunaite, L.; Alderliesten, T.; Horschig, J.M.; Colier, W.N. fNIRS signal quality estimation by means of a machine learning algorithm trained on morphological and temporal features. Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables II. Int. Soc. Opt. Photonics 2021, 11638, 116380F. [Google Scholar]
- Azhari, A.; Leck, W.; Gabrieli, G.; Bizzego, A.; Rigo, P.; Setoh, P.; Bornstein, M.; Esposito, G. Parenting stress undermines mother-child brain-to-brain synchrony: A hyperscanning study. Sci. Rep. 2019, 9, 11407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azhari, A.; Bizzego, A.; Esposito, G. Father-child dyads exhibit unique inter-subject synchronisation during co-viewing of animation video stimuli. Soc. Neurosci. 2021, 16, 522–533. [Google Scholar] [CrossRef]
- Azhari, A.; Rigo, P.; Tan, P.Y.; Neoh, M.J.Y.; Esposito, G. Viewing Romantic and Friendship Interactions Activate Prefrontal Regions in Persons With High Openness Personality Trait. Front. Psychol. 2020, 11, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azhari, A.; Lim, M.; Bizzego, A.; Gabrieli, G.; Bornstein, M.H.; Esposito, G. Physical presence of spouse enhances brain-to-brain synchrony in co-parenting couples. Sci. Rep. 2020, 10, 7569. [Google Scholar] [CrossRef] [PubMed]
- Bizzego, A.; Gabrieli, G.; Esposito, G. Deep Neural Networks and Transfer Learning on a Multivariate Physiological Signal Dataset. Bioengineering 2021, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Shang, W.; Sohn, K.; Almeida, D.; Lee, H. Understanding and improving convolutional neural networks via concatenated rectified linear units. In Proceedings of the ICML’16: Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2217–2225. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Piscataway, NJ, USA, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Van den Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- McKinney, W. Pandas: A foundational Python library for data analysis and statistics. In Proceedings of the Workshop Python for High Performance and Scientific Computing (SC11), Seattle, WA, USA, 18 November 2011; Volume 14. Available online: https://www.dlr.de/sc/portaldata/15/resources/dokumente/pyhpc2011/submissions/pyhpc2011submission9.pdf (accessed on 13 October 2021).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021. [Google Scholar]
- Bekkar, M.; Djemaa, H.K.; Alitouche, T.A. Evaluation measures for models assessment over imbalanced data sets. J. Inf. Eng. Appl. 2013, 3, 7633. [Google Scholar]
- Guilford, J.P. Psychometric Methods; McGraw-Hill: Washington, DC, USA, 1954. [Google Scholar]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.; Nielsen, H. Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics 2000, 16, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Gorodkin, J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol. Chem. 2004, 28, 367–374. [Google Scholar] [CrossRef]
- Gabrieli, G.; Bizzego, A.; Esposito, G. Replication Data for: fNIRS-QC: Crowd-Sourced Creation of a Dataset and Machine Learning Model for fNIRS Quality Control. 2021. Available online: https://researchdata.ntu.edu.sg/dataset.xhtml?persistentId=doi:10.21979/N9/C8VYZG (accessed on 13 October 2021).
- Gabrieli, G. sanlab-ntu/cisciqc: 0.0.1.1. 2021. Available online: https://zenodo.org/record/5163238 (accessed on 13 October 2021).
- Bizzego, A.; Gabrieli, G.; Furlanello, C.; Esposito, G. Comparison of wearable and clinical devices for acquisition of peripheral nervous system signals. Sensors 2020, 20, 6778. [Google Scholar] [CrossRef]
Study | Number of Signals |
---|---|
Mother-Child Synchrony | 836 |
Father-Child Synchrony | 2034 |
3-Love Study | 1035 |
Mother-Father Synchrony | 480 |
4385 |
User ID | Expertise | Reject | Keep after Correction | Keep | Total |
---|---|---|---|---|---|
1 | Intermediate | 153 | 249 | 100 | 502 |
2 | Intermediate | 5 | 7 | 18 | 30 |
3 | Expert | 52 | 51 | 33 | 136 |
4 | Intermediate | 8 | 81 | 11 | 100 |
5 | Intermediate | 5 | 95 | 0 | 100 |
6 | Expert | 18 | 6 | 8 | 32 |
7 | Intermediate | 188 | 281 | 33 | 502 |
8 | Beginner | 123 | 251 | 125 | 499 |
9 | Beginner | 319 | 57 | 124 | 500 |
871 | 1078 | 452 | 2401 |
Rating | |||
---|---|---|---|
Keep | 19 | 53 | 47 |
Keep after Correction | 324 | 213 | 212 |
Reject | 167 | 244 | 251 |
Metric | Partition | |
---|---|---|
Train | Test | |
Accuracy | 0.70 | 0.63 |
MCC | 0.18 | 0.25 |
Precision | 0.61 | |
Recall | 0.95 | |
F1 | 0.74 |
Predictions | |||
---|---|---|---|
Reject | Keep | ||
User labels | Reject | 29 | 92 |
Keep | 30 | 257 |
Predictions | |||
---|---|---|---|
Reject | Keep | ||
User labels | Reject | 10 | 35 |
Keep | 3 | 54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrieli, G.; Bizzego, A.; Neoh, M.J.Y.; Esposito, G. fNIRS-QC: Crowd-Sourced Creation of a Dataset and Machine Learning Model for fNIRS Quality Control. Appl. Sci. 2021, 11, 9531. https://doi.org/10.3390/app11209531
Gabrieli G, Bizzego A, Neoh MJY, Esposito G. fNIRS-QC: Crowd-Sourced Creation of a Dataset and Machine Learning Model for fNIRS Quality Control. Applied Sciences. 2021; 11(20):9531. https://doi.org/10.3390/app11209531
Chicago/Turabian StyleGabrieli, Giulio, Andrea Bizzego, Michelle Jin Yee Neoh, and Gianluca Esposito. 2021. "fNIRS-QC: Crowd-Sourced Creation of a Dataset and Machine Learning Model for fNIRS Quality Control" Applied Sciences 11, no. 20: 9531. https://doi.org/10.3390/app11209531
APA StyleGabrieli, G., Bizzego, A., Neoh, M. J. Y., & Esposito, G. (2021). fNIRS-QC: Crowd-Sourced Creation of a Dataset and Machine Learning Model for fNIRS Quality Control. Applied Sciences, 11(20), 9531. https://doi.org/10.3390/app11209531