Risk Prediction for Winter Road Accidents on Expressways
Abstract
:1. Introduction
2. Data
2.1. Road Accident Data
2.2. Weather Data
2.3. Highway Data
2.4. Shuttle Radar Topography Mission Data
2.5. Construction of Combined Data
3. Methods
3.1. Logistic Regression Model
3.2. Neural Network Model
3.3. Random Forest Model
3.4. eXtreme Gradient Boosting (XGBoost)
3.5. k-Fold Cross Validation
3.6. Performance Evaluation
4. Results
5. Visualization Service
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, Y.H.; Shin, J.K.; Lee, S.H. Can Self-driving Cars Contribute to Economic Growth? Evidence from an Analysis of Highway Usage and Economic Growth based on Regional Panel Data in South Korea. J. Ind. Econ. 2021, 34, 761–780. [Google Scholar] [CrossRef]
- Malin, F.; Norros, I.; Innamaa, S. Accident risk of road and weather conditions on different road types. Accid Anal. Prev. 2019, 122, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Nandurge, P.A.; Dharwadkar, N.V. Analyzing road accident data using machine learning paradigms. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 604–610. [Google Scholar] [CrossRef]
- Park, H.; Joo, S.; Oh, C. Development of an Evaluation Index for Identifying Freeway Traffic Safety Based on Integrating RWIS and VDS Data. J. Korean Soc. Trans. 2014, 32, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Venkat, A.; KP, G.V.; Thomas, I.S.; Ranjani, D. Machine Learning Based Analysis for Road Accident Prediction. Int. J. Emerg. Technol. Innov. Eng. 2020, 6, 31–37. [Google Scholar]
- Paul, J.; Jahan, Z.; Lateef, K.F.; Islam, M.R.; Bakchy, S.C. Prediction of Road Accident and Severity of Bangladesh Applying Machine Learning Techniques. In Proceedings of the 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, 1–3 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Schlogl, M. A multivariate analysis of environmental effects on road accident occurrence using a balanced bagging approach. Accid Anal. Prev. 2020, 136, 105398. [Google Scholar] [CrossRef]
- Eboli, L.; Forciniti, C.; Mazzulla, G. Factors influencing accident severity: An analysis by road accident type. Transp. Res. Procedia 2020, 47, 449–456. [Google Scholar] [CrossRef]
- Park, S.J.; Kho, S.Y.; Park, H.C. The effects of road geometry on the injury severity of expressway traffic accident depending on weather conditions. J. Korea Inst. Intell. Transport. Syst. 2019, 18, 12–28. [Google Scholar] [CrossRef]
- Norrman, J.; Eriksson, M.; Lindqvist, S. Relationships between road slipperiness, traffic accident risk and winter road maintenance activity. Clim. Res. 2000, 15, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Bergel-Hayat, R.; Debbarh, M.; Antoniou, C.; Yannis, G. Explaining the road accident risk: Weather effects. Accid Anal. Prev. 2013, 60, 456–465. [Google Scholar] [CrossRef] [Green Version]
- MOLIT OpenAPI Service. Available online: http://61.43.91.73:8080 (accessed on 2 August 2020).
- Automatic Weather System. Available online: http://weather.go.kr (accessed on 2 August 2021).
- Kim, D.; Yoon, S.; Kim, B. Comparison of spatial interpolation methods for producing road weather information in winter. J. Korean Data Anal. Soc. 2020, 23, 541–551. [Google Scholar] [CrossRef]
- Jeong, M.; Eun, Y.; Kim, H.; Jeon, D. A study on taxi route extraction based on a nodelink model for aircraft movements on airport surface. J. Korean Soc. Aviat. Aeronaut. 2017, 25, 51–60. [Google Scholar]
- Kim, D.; Ahn, S.; Lee, C.; Yoon, S. Real-time data processing and visualization for road weather services. J. Digital Converg. 2020, 18, 221–228. [Google Scholar] [CrossRef]
- Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Saalfeld, A. Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartogr. Geogr. Inf. Sci. 1999, 26, 7–18. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos. Trans. Am. Geophys. Union. 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Ahn, C.; Ahn, H. Application of Random Over Sampling Examples (ROSE) for an Effective Bankruptcy Prediction Model. J. Korea Contents Assoc. 2018, 18, 525–535. [Google Scholar] [CrossRef]
- Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl Discov. 2014, 28, 92–122. [Google Scholar] [CrossRef]
- Torgo, L.; Torgo, M.L. Package ‘DMwR’. Functions and Data for ‘Data Mining with R’. Available online: https://cran.r-project.org/web/packages/DMwR/DMwR.pdf (accessed on 16 March 2021).
- Bak, S.H.; Kim, H.M.; Kim, B.K.; Hwang, D.H.; Unuzaya, E.; Yoon, H.J. Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model and Decision Tree Model. J. Korea Inst. Electron. Commun. Sci. 2018, 13, 777–786. [Google Scholar] [CrossRef]
- Ma, Z.; Shao, C.; Yue, H.; Ma, S. Analysis of the logistic model for accident severity on urban road environment. In Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; pp. 983–987. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Chapman and Hall: London, UK, 1989. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [Green Version]
- Steppe, J.M. Feature and Model Selection in Feedforward Neural Networks; Air Force Inst of Tech Wright-Patterson Afb Oh School Of Engineering: Greene County, OH, USA, 1994. [Google Scholar]
- Ripley, B.; Wenables, W.; Ripley, M.B. Package ‘nnet’. Feed-Forward Neural Networks and Multinomial Log-Linear Models. Available online: http://www.stats.ox.ac.uk/pub/MASS4/ (accessed on 3 May 2021).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.R.; Park, M.J. A study on the art price prediction model using the random forests. J. Appl. Reliab. 2020, 20, 34–42. [Google Scholar] [CrossRef]
- RColorBrewer, S.; Maintainer, A.L. Package ‘randomForest’. Breiman and Cutler’s Random Forests for Classification and Regression. Available online: https://www.stat.berkeley.edu/~breiman/RandomForests/ (accessed on 25 March 2018).
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V. Package ‘xgboost’. Extereme Gradient Boosting. Volume 90. Available online: https://github.com/dmlc/xgboost (accessed on 22 April 2021).
- Geisser, S. The predictive sample reuse method with applications. J. Am. Stat. Assoc. 1975, 70, 320–328. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wu, J.; Zhou, Z.H. Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 2008, 39, 539–550. [Google Scholar] [CrossRef]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Team, R.C.; et al. Package ‘caret’. Classification and Regression Training. Available online: https://github.com/topepo/caret/ (accessed on 20 March 2020).
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Kim, Y.; Jun, Y.; Shin, Y. Random forest based prediction of road surface condition using spatio-temporal features. J. Korean Soc. Trans. 2019, 338–349. [Google Scholar] [CrossRef]
- Lang, D.T.; Maintainer, D.T.L. Package ‘RCurl’. General Network Client Interface for R. Available online: https://www.omegahat.net/RCurl (accessed on 1 March 2016).
- Graul, C.; Graul, M.C. Package ‘leafletR’. Interactive Web-Maps Based on the Leaflet JavaScript Library. Available online: https://github.com/chgrl/leafletR (accessed on 1 April 2016).
No | Source | Lon. | Lat. | Accident | Road_Type | Max_Angle | Min_Radius | |
---|---|---|---|---|---|---|---|---|
1 | MOLIT &NodeLink | 128.686 | 35.869 | Weather | Road | 24.864 | 56.889 | |
2 | 127.109 | 37.614 | Accident | Road | 32.075 | 42.691 | ||
3 | 126.820 | 37.584 | Accident | Bridge | 11.396 | 14.961 | ||
8683 | 126.634 | 37.46475 | Accident | Tunnel | 9.300 | 147.142 | ||
No | Source | Temp | Ws | Prec | Hpa | Rh | ||
1 | KMA | 3.3 | 0.115 | 0 | 1019.6 | 77.338 | ||
2 | −2.5 | 3.116 | 0 | 1016.2 | 52.477 | |||
1.0 | 1.383 | 0 | 1027.4 | 73.974 | ||||
8683 | 4.1 | 1.125 | 0 | 1027.8 | 56.885 | |||
No | Source | Altitude | diff_north | diff_south | diff_west | diff_east | cov_west | cov_east |
1 | SRTM | 39 | 1 | 1 | −1 | 1 | 0 | 0 |
2 | 38 | 1 | −1 | 1 | 0 | 0 | 0 | |
10 | −4 | 0 | −28 | 0 | 0 | 28 | ||
8683 | 9 | −1 | 1 | −1 | −7 | 0 | 11 |
Predicted Class | |||
---|---|---|---|
True | False | ||
Actual Class | True | True Positive(TP) | False Negative(FN) |
False | False Positive(FP) | True Negative(TN) |
N | Accuracy | Kappa | Auc | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Logistic | 10 | 0.823 | 0.003 | 0.645 | 0.005 | 0.691 | 0.057 |
Neural Network | 10 | 0.972 | 0.001 | 0.945 | 0.003 | 0.958 | 0.012 |
XGBoost | 10 | 0.991 | 0.001 | 0.982 | 0.002 | 0.978 | 0.008 |
Random Forest | 10 | 0.991 | 0.001 | 0.982 | 0.002 | 0.986 | 0.002 |
Variable | Est. | Exp(Est.) | 95% CI | z | |
---|---|---|---|---|---|
Lower | Upper | ||||
hr | −0.089 | 0.915 | −0.129 | −0.049 | −4.371 *** |
lon | −0.140 | 0.870 | −0.433 | 0.154 | −0.932 |
lat | −0.986 | 0.373 | −1.244 | −0.729 | −7.500 *** |
alt | 0.004 | 1.004 | −0.001 | 0.009 | 1.700 |
diff_up | 0.005 | 1.005 | −0.036 | 0.046 | 0.245 |
diff_down | 0.009 | 1.009 | −0.037 | 0.056 | 0.389 |
diff_right | −0.007 | 0.993 | −0.020 | 0.007 | −0.971 |
diff_left | 0.003 | 1.003 | −0.011 | 0.018 | 0.420 |
temp | 0.038 | 1.039 | −0.006 | 0.082 | 1.692 |
ws | 0.207 | 1.230 | −0.004 | 0.418 | 1.924 |
prec | −0.063 | 0.938 | −0.408 | 0.281 | −0.362 |
rh | 0.051 | 1.052 | 0.038 | 0.064 | 7.827 *** |
hpa | −0.001 | 0.999 | −0.043 | 0.040 | −0.071 |
min_radius | 0.000 | 1.000 | 0.000 | 0.000 | −0.039 |
max_diff | −0.017 | 0.984 | −0.037 | 0.004 | −1.557 |
cov_right | 0.000 | 1.000 | −0.001 | 0.001 | 0.778 |
cov_left | 0.000 | 1.000 | −0.001 | 0.001 | −0.353 |
tunnel | 0.398 | 1.488 | −1.701 | 2.497 | 0.371 |
bridge | −0.031 | 0.970 | −2.078 | 2.017 | −0.029 |
N | Accuracy | Kappa | AUC | F-measure | G-mean | |
---|---|---|---|---|---|---|
Mean(SD) | Mean(SD) | Mean(SD) | Mean(SD) | Mean(SD) | ||
Logistic | 10 | 0.742 (0.078) | 0.085 (0.023) | 0.790 (0.024) | 0.847 (0.056) | 0.786 (0.030) |
Neural Network | 10 | 0.940 (0.008) | 0.331 (0.030) | 0.879 (0.008) | 0.969 (0.004) | 0.877 (0.009) |
XGBoost | 10 | 0.980 (0.003) | 0.613 (0.038) | 0.898 (0.010) | 0.990 (0.002) | 0.894 (0.012) |
Random Forest | 10 | 0.984 (0.001) | 0.658 (0.019) | 0.907 (0.008) | 0.992 (0.001) | 0.904 (0.008) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Jung, S.; Yoon, S. Risk Prediction for Winter Road Accidents on Expressways. Appl. Sci. 2021, 11, 9534. https://doi.org/10.3390/app11209534
Kim D, Jung S, Yoon S. Risk Prediction for Winter Road Accidents on Expressways. Applied Sciences. 2021; 11(20):9534. https://doi.org/10.3390/app11209534
Chicago/Turabian StyleKim, Daeseong, Sangyun Jung, and Sanghoo Yoon. 2021. "Risk Prediction for Winter Road Accidents on Expressways" Applied Sciences 11, no. 20: 9534. https://doi.org/10.3390/app11209534
APA StyleKim, D., Jung, S., & Yoon, S. (2021). Risk Prediction for Winter Road Accidents on Expressways. Applied Sciences, 11(20), 9534. https://doi.org/10.3390/app11209534