Active Thermography for the Detection of Sub-Surface Defects on a Curved and Coated GFRP-Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Long-Pulse Thermography
2.2. Signal Processing Methods
3. Experimental Set-Up
3.1. Measurement Object
3.2. Measurement System
3.3. Image Processing
4. Results and Discussion
4.1. Detectability of Sub-Surface Defects in Front Perspective
4.2. Influence of the Excitation Time on Sub-Surface Defect Detectability
4.3. Influence of the Angular Perspective on Sub-Surface Defect Detectability
5. Conclusions and Outlook
- Sub-surface defects can also be detected on strongly curved and coated test specimens, which are similar in size and structural design to the leading edge of a rotor blade in the tip area.
- Sub-surface defects with a depth-to-diameter ratio of up to were detected, which exceeds the previously detected depth-to-diameter ratios of up to on flat plates.
- The determined CNR value depends significantly on the depth at which a defect is located rather than the diameter of the defect.
- Sub-surface defects that have an angular offset from the optical axis of the camera and are therefore subject to the object’s curvature can also be detected, but with a decreasing CNR value as the viewing angle increases.
- There is an optimal excitation time depending on the depth of a defect: For a defect with a depth of , an excitation time of to was found to be optimal. For defects at a depth of , no optimal excitation duration could be determined based on the available experimental data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
CFRP | carbon fiber-reinforced plastic |
CNR | contrast-to-noise ratio |
GFRP | glass fiber-reinforced plastic |
PCA | principal component analysis |
ROI | region of interest |
SNR | signal-to-noise ratio |
A | normalized matrix |
absolute contrast between area A and B | |
defect diameter in | |
defect depth in | |
, | mean intensity of area A, B |
distance between excitation unit and test sample in | |
inner radius in | |
s | wall thickness in |
wall thickness of GFRP half pipe in | |
S | singular value matrix |
, | standard deviation of area A, B |
standard deviation of area A and B | |
U | matrix of empirical orthogonal functions |
excitation time in | |
recording time in | |
transposed matrix with principal components | |
angle in |
References
- Sagol, E.; Reggio, M.; Ilinca, A. Issues concerning roughness on wind turbine blades. Renew. Sustain. Energy Rev. 2013, 23, 514–525. [Google Scholar] [CrossRef]
- Gaudern, N. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. J. Phys. Conf. Ser. 2014, 524, 012031. [Google Scholar] [CrossRef]
- Timmer, W.A.; Schaffarczyk, A.P. The effect of roughness at high Reynolds numbers on the performance of aerofoil DU 97-W-300Mod. Wind Energy 2004, 7, 295–307. [Google Scholar] [CrossRef]
- Dollinger, C.; Balaresque, N.; Gaudern, N.; Sorg, M.; Fischer, A. Calculation of the power output loss based on thermographic measurement of the leading edge condition. J. Phys. Conf. Ser. 2018, 1037, 052011. [Google Scholar] [CrossRef] [Green Version]
- Herring, R.; Dyer, K.; Martin, F.; Ward, C. The increasing importance of leading edge erosion and a review of existing protection solutions. Renew. Sustain. Energy Rev. 2019, 115, 109382. [Google Scholar] [CrossRef]
- Keegan, M.H. Wind Turbine Blade Leading Edge Erosion: An Investigation of Rain Droplet and Hailstone Impact Induced Damage Mechanisms. Ph.D. Thesis, University of Strathclyde, Glascow, UK, 2014. [Google Scholar]
- Schmitt, G.F., Jr. Materials Paramteres that Govern the Rain Erosion Behavior of Polymeric Coatings and Composites at Subsonic Velocities; Air Force Materials Laboratory Wright-Patterson AFB: Greene County, OH, USA, 1971. [Google Scholar]
- Zhang, S.; Dam-Johansen, K.; Nørkjær, S.; Bernad, P.L.; Kiil, S. Erosion of wind turbine blade coatings—Design and analysis of jet-based laboratory equipment for performance evaluation. Prog. Org. Coat. 2015, 78, 103–115. [Google Scholar] [CrossRef]
- Beganovic, N.; Söffker, D. Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results. Renew. Sustain. Energy Rev. 2016, 64, 68–83. [Google Scholar] [CrossRef]
- Yang, R.; He, Y.; Zhang, H. Progress and trends in nondestructive testing and evaluation for wind turbine composite blade. Renew. Sustain. Energy Rev. 2016, 60, 1225–1250. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process. 2020, 141, 106445. [Google Scholar] [CrossRef]
- Meinlschmidt, P.; Aderhold, J. Thermographic Inspection of Rotor Blades. In Proceedings of the 9th European Conference on NDT, Berlin, Germany, 25–29 September 2006. [Google Scholar]
- Almond, D.P.; Angioni, S.L.; Pickering, S.G. Long pulse excitation thermographic non-destructive evaluation. NDT E Int. 2017, 87, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Lizaranzu, M.; Lario, A.; Chiminelli, A.; Amenabar, I. Non-destructive testing of composite materials by means of active thermography-based tools. Infrared Phys. Technol. 2015, 71, 113–120. [Google Scholar] [CrossRef]
- Panella, F.W.; Pirinu, A.; Dattoma, V. A Brief Review and Advances of Thermographic Image-Processing Methods for IRT Inspection: A Case of Study on GFRP Plate. Exp. Tech. 2020, 45, 429–443. [Google Scholar] [CrossRef]
- Wei, Y.; Su, Z.; Mao, S.; Zhang, D. An Infrared Defect Sizing Method Based on Enhanced Phase Images. Sensors 2020, 20, 3626. [Google Scholar] [CrossRef] [PubMed]
- Maierhofer, C.; Röllig, M.; Gower, M.; Lodeiro, M.; Baker, G.; Monte, C.; Adibekyan, A.; Gutschwager, B.; Knazowicka, L.; Blahut, A. Evaluation of Different Techniques of Active Thermography for Quantification of Artificial Defects in Fiber-Reinforced Composites Using Thermal and Phase Contrast Data Analysis. Int. J. Thermophys. 2018, 39. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, G.; Meo, M.; Ciampa, F. Image processing based quantitative damage evaluation in composites with long pulse thermography. NDT E Int. 2018, 99, 93–104. [Google Scholar] [CrossRef]
- Kamińska, P.; Ziemkiewcz, J.; Synaszko, P.; Dragan, K. Comparison of Pulse Thermography (PT) and Step Heating (SH) Thermography in Non-Destructive Testing of Unidirectional GFRP Composites. Fatigue Aircr. Struct. 2019, 2019, 87–102. [Google Scholar] [CrossRef]
- Almond, D.P.; Angioni, S.L.; Pickering, S.G. Thermographic NDE advisory and guidance system. NDT E Int. 2016, 83, 134–142. [Google Scholar] [CrossRef]
- Wei, Z.; Fernandes, H.; Herrmann, H.G.; Tarpani, J.R.; Osman, A. A Deep Learning Method for the Impact Damage Segmentation of Curve-Shaped CFRP Specimens Inspected by Infrared Thermography. Sensors 2021, 21, 395. [Google Scholar] [CrossRef]
- Da Silva, W.F.; Melo, R.A.C.; Grosso, M.; Pereira, G.R.; Riffel, D.B. Active Thermography Data-Processing Algorithm for Nondestructive Testing of Materials. IEEE Access 2020, 8, 175054–175062. [Google Scholar] [CrossRef]
- Pastuszak, P.D. Characterization of Defects in Curved Composite Structures Using Active Infrared Thermography. Procedia Eng. 2016, 157, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Castanedo, C.; Avdelidis, N.P.; Grenier, M.; Maldague, X.; Bendada, A. Active thermography signal processing techniques for defect detection and characterization on composite materials. In Thermosense XXXII; Dinwiddie, R.B., Safai, M., Eds.; International Society for Optics and Photonics: Orlando, FL, USA, 2010; Volume 7661, p. 76610O. [Google Scholar] [CrossRef]
- Roche, J.M.; Leroy, F.H.; Balageas, D.L. Images of TSR coefficients: A sinple way for a rapid and efficient detectin of defects. Mater. Eval. 2013, 72, 73–82. [Google Scholar]
- Lopez, F.; Maldague, X.; Ibarra-Castanedo, C. Enhanced image processing for infrared non-destructive testing. Opto-Electron. Rev. 2014, 22. [Google Scholar] [CrossRef]
- Sanati, H.; Wood, D.; Sun, Q. Condition Monitoring of Wind Turbine Blades Using Active and Passive Thermography. Appl. Sci. 2018, 8, 2004. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Molares, A.; Rindal, O.M.H.; D’hooge, J.; Masoy, S.E.; Austeng, A.; Lediju Bell, M.A.; Torp, H. The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 745–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dollinger, C. Thermografische Strömungsvisualisierung an Rotorblättern von Windenergieanlagen. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2018. [Google Scholar]
- Rajic, N. Principal Component Thermography; DSTO. Aeronautical and Maritime Research Laboratory: Fisherman’s Bend, Australia, 2002. [Google Scholar]
- Rajic, N. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 2002, 58, 521–528. [Google Scholar] [CrossRef]
- Hau, E. Windkraftanlagen: Grundlagen, Technik, Einsatz, Wirschaftlichkeit, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Abbott, I.H.; Dodenhof, A.E.; Stivers, L.S., Jr. NACA TR 824—Summary of Airfoil Data; National Advisory Committee for Aeronautics: Washington, DC, USA, 1945. [Google Scholar]
- Schürmann, H. Konstruieren mit Faser-Kunststoff-Verbunden, 2nd ed.; Spinger: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Arora, V.; Mulaveesala, R.; Dua, G.; Sharma, A. Thermal non-destructive testing and evaluation for subsurface slag detection: Numerical modelling. Insight Non-Destr. Test. Cond. Monit. 2020, 62, 264–268. [Google Scholar] [CrossRef]
No. | ROI | Depth [] | Diameter [] | Depth-to-Diameter Ratio |
---|---|---|---|---|
1 | A | 1.5 | 3 | 0.50 |
2 | A | 1.4 | 2.5 | 0.56 |
3 | A | 1.5 | 2 | 0.75 |
4 | A & B | 0 | 1.5 | - |
5 | B | 2.4 | 3.5 | 0.69 |
6 | B | 2.2 | 3 | 0.73 |
7 | B | 2.6 | 2.5 | 1.04 |
Test Series | 1 | 2 | 3 |
---|---|---|---|
ROI | A | B | A |
excitation time [s] | 10, 15, 20, 25, 30 | 15, 20, 25, 30, 35 | 25 |
distance k [] | 22, 43, 60, 89, 114, 155, 300 | 60 | |
angular perspective , [] | 0 | 25, 45 | |
excitation power [] | 1 | ||
recording time [] | 30 | ||
rec. frequency [] | 20 | ||
integration time [] | 1600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, F.; Terlau, M.; Sorg, M.; Fischer, A. Active Thermography for the Detection of Sub-Surface Defects on a Curved and Coated GFRP-Structure. Appl. Sci. 2021, 11, 9545. https://doi.org/10.3390/app11209545
Jensen F, Terlau M, Sorg M, Fischer A. Active Thermography for the Detection of Sub-Surface Defects on a Curved and Coated GFRP-Structure. Applied Sciences. 2021; 11(20):9545. https://doi.org/10.3390/app11209545
Chicago/Turabian StyleJensen, Friederike, Marina Terlau, Michael Sorg, and Andreas Fischer. 2021. "Active Thermography for the Detection of Sub-Surface Defects on a Curved and Coated GFRP-Structure" Applied Sciences 11, no. 20: 9545. https://doi.org/10.3390/app11209545
APA StyleJensen, F., Terlau, M., Sorg, M., & Fischer, A. (2021). Active Thermography for the Detection of Sub-Surface Defects on a Curved and Coated GFRP-Structure. Applied Sciences, 11(20), 9545. https://doi.org/10.3390/app11209545