Comparison of Microbial Gene Diversity in Grassland Topsoil Depending on Soil Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Surface Soil Quality Assessment
2.3. Sample Pretreatment and NGS Analysis
3. Results
3.1. Soil Quality
3.2. Genomic Characteristics of Prokaryotes and Eukaryotes According to Soil Quality
3.2.1. Characteristics of Prokaryotes
3.2.2. Characteristics of Eukaryotes
3.2.3. Characteristics of Prokaryotes and Eukaryotes at the Genus and Species Levels according to Soil Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korea Environmental Industry & Technology Institute. Integrated Management of Surface Soil Environment with Tracking and Prediction Technology; Korea Environmental Industry & Technology Institute: Seoul, Korea, 2019; pp. 1–266. [Google Scholar]
- Upton, R.N.; Sielaff, A.C.; Hofmockel, K.S.; Xu, X.; Polley, H.W.; Wilsey, B.J. Soil depth and grassland origin cooperatively shape microbial community co-occurrence and function. Ecosphere 2020, 11, e02973. [Google Scholar] [CrossRef] [Green Version]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial indicators for soil quality. Biol. Fertil. Soils. 2018, 54, 1–10. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Environmental Research. The 3rd Basic Plan for Natural Environment Conservation (2016–2025); National Institute of Environmental Research: Incheon, Korea, 2015; pp. 1–175.
- Oh, S.M.; Kim, H.S.; Lee, S.-P.; Lee, J.G.; Jeong, S.S.; Lim, K.J.; Kim, S.C.; Park, Y.S.; Lee, G.; Hwang, S.-I.; et al. Estimating of the greenhouse gas mitigation and function of water resources conservation through conservation of surface soils erosion and policy suggestion. J. Soil Groundwater Environ. 2017, 22, 74–84. [Google Scholar]
- Nearing, M.A.; Pruski, F.F.; O’Neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserve. 2004, 59, 43–50. [Google Scholar]
- Román Dobarco, M.; Bourennane, H.; Arrouays, D.; Saby, N.P.A.; Cousin, I.; Martin, M.P. Uncertainty assessment of GlobalSoilMap soil available water capacity products: A French case study. Geoderma 2019, 344, 14–30. [Google Scholar] [CrossRef]
- Kim, H.; Kaown, D.; Mayer, B.; Lee, J.Y.; Hyun, Y.; Lee, K.K. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Sci. Total Environ. 2015, 533, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Si, P.; Liu, E.; Yan, C.; Zhang, Z.; Zhang, Y. Influence of film mulching on soil microbial community in a rainfed region of northeastern China. Sci. Rep. 2017, 7, 8468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Kaown, D.; Mayer, B.; Lee, J.Y.; Lee, K.K. Combining pyrosequencing and isotopic approaches to assess denitrification in a hyporheic zone. Sci. Total Environ. 2018, 631–632, 755–764. [Google Scholar] [CrossRef]
- Feng, H.; Guo, J.; Wang, W.; Song, X.; Yu, S. Soil depth determines the composition and diversity of bacterial and archaeal communities in a poplar plantation. Forests 2019, 10, 550. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, K.K. Effect of vertical flow exchange on microbial community distributions in hyporheic zones. Episodes 2019, 42, 1–16. [Google Scholar] [CrossRef]
- Conant, R.T.; Haddix, M.; Paustian, K. Partitioning soil carbon responses to warming: Model-derived guidance for data interpretation. Soil Biol. Biochem. 2010, 42, 2034–2036. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Field Book for Describing and Sampling Soils. 2021. Available online: https://www.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052523.pdf (accessed on 1 October 2021).
- U.S. Department of Agriculture. Soil Quality Demonstrations and Procedures. 2021. Available online: https://www.ars.usda.gov/ARSUserFiles/35170/soil%20quality%20demos%20January%202011.pdf (accessed on 1 October 2021).
- Ministry of the Environment. Soil Pollution Process Test Criteria; No. 2015-261; National Institute of Environmental Research: Incheon, Korea, 2015.
- Acosta-Martinez, V.; Cano, A.; Johnson, J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices. Appl. Soil Ecol. 2018, 126, 121–128. [Google Scholar] [CrossRef]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Bhaduri, D.; Purakayastha, T.J.; Patra, A.K.; Chakraborty, D. Evaluating soil quality under a long term integrated tillage-water-nutrient experiment with intensive rice-wheat rotation in a semi-arid inceptisol, India. Environ. Monit. Assess. 2014, 186, 2535–2547. [Google Scholar] [CrossRef]
- Wymore, A.W. Model—Based Systems Engineering. In An Introduction to the Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of System Design; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved Bacterial 16S rRNA GenemSystems (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. Msystems 2016, 1, e00009-15. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.; Winding, A. Microorganisms as Indicators of Soil Health [NERI Technical Report, 388]; 2002. Available online: https://www2.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR388.pdf (accessed on 5 September 2021).
- Fujitani, H.; Momiuchi, K.; Ishii, K.; Nomachi, M.; Kikuchi, S.; Ushiki, N.; Sekiguchi, Y.; Tsuneda, S. Genomic and physiological characteristics of a novel nitrite-oxidizing Nitrospira strain isolated from a drinking water treatment plant. Front. Microbiol. 2020, 11, 545190. [Google Scholar] [CrossRef]
- Gutierrez, T.; Green, D.H.; Nichols, P.D.; Whitman, W.B.; Semple, K.T.; Aitken, M.D. Polycyclovorans Algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl. Environ. Microbiol. 2013, 79, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Childers, S.E.; Ciufo, S.; Lovley, D.R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 2002, 416, 767–769. [Google Scholar] [CrossRef]
- Tourna, M.; Stieglmeier, M.; Spang, A.; Konneke, M.; Schintlmeister, A.; Urich, T.; Engel, M.; Schloter, M.; Wagner, M.; Richter, A.; et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA 2011, 108, 8420–8425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, J.D.; Ellis, D.J.; Gaw, C.V.; Lovley, D.R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Bacteriol. 1999, 49, 1615–1622. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, P.C.B. Bacillus. In Barron’s Medical Microbiology, 4th ed.; University of Texas Medical Branch, 1996. Available online: https://www.ncbi.nlm.nih.gov/books/NBK7627/ (accessed on 5 September 2021).
- Lehtovirta-Morley, L.E.; Stoecker, K.; Vilcinskas, A.; Prosser, J.I.; Nicol, G.W. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. USA 2011, 108, 15892–15897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, Z.; Barrick, J.E.; Yao, Z.; Roth, A.; Kim, J.N.; Gore, J.; Wang, J.X.; Lee, E.R.; Block, K.F.; Sudarsan, N.; et al. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res. 2007, 35, 4809–4819. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.E.; Sokol, P.A. The Genus. In The Prokaryotes—A Handbook on the Biology of Bacteria, 3rd ed.; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 848–860. [Google Scholar]
- Dobritsa, A.P.; Samadpour, M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia Gen. Nov. To accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int. J. Syst. Evol. Microbiol. 2016, 66, 2836–2846. [Google Scholar] [CrossRef]
- Puri, A.; Padda, K.P.; Chanway, C.P. Sustaining the growth of pinaceae trees under nutrient-limited edaphic conditions via plant-beneficial bacteria. PLoS ONE 2020, 15, e0238055. [Google Scholar] [CrossRef]
- Willms, I.M.; Rudolph, A.Y.; Göschel, I.; Bolz, S.H.; Schneider, D.; Penone, C.; Poehlein, A.; Schöning, I.; Nacke, H. Globally abundant ‘Candidatus Udaeobacter’ benefits from release of antibiotics in soil and potentially performs trace gas scavenging. mSphere. 2020, 5, e00186-20. [Google Scholar] [CrossRef]
- Achouak, W.; Sutra, L.; Heulin, T.; Meyer, J.M.; Fromin, N.; Degraeve, S.; Christen, R.; Gardan, L. Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int. J. Syst. Evol. Microbiol. 2000, 50, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.L.; Zhang, C.F.; Jin, R.; Zhang, Y.Q. Steroidobacter flavus sp. nov., a microcystin-degrading Gammaproteobacterium isolated from soil. Antonie Leeuwenhoek 2016, 109, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- VanInsberghe, D.; Maas, K.R.; Cardenas, E.; Strachan, C.R.; Hallam, S.J.; Mohn, W.W. Non-symbiotic bradyrhizobium ecotypes dominate North American forest soils. ISME J. 2015, 9, 2435–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thawai, C.; Tanasupawat, S.; Suwanborirux, K.; Kudo, T. Actinaurispora siamensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int. J. Syst. Evol. Microbiol. 2010, 60, 1660–1666. [Google Scholar] [CrossRef]
- Prakash, O.; Green, S.J.; Jasrotia, P.; Overholt, W.A.; Canion, A.; Watson, D.B.; Brooks, S.C.; Kostka, J.E. Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Int. J. Syst. Evol. Microbiol. 2012, 62, 2457–2462. [Google Scholar] [CrossRef] [Green Version]
- Kulichevskaya, I.S.; Suzina, N.E.; Liesack, W.; Dedysh, S.N. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. Int. J. Syst. Evol. Microbiol. 2010, 60, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by -omics approaches: A perspective for the environment, food quality and human safety. Microorganisms 2021, 9, 1400. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, G.; Schulz, S.; Schöler, A.; Schloter, M. Making big data smart—How to use metagenomics to understand soil quality. Biol. Fertil. Soils 2017, 53, 479–484. [Google Scholar] [CrossRef]
- da Costa, G.L.; de Moraes, A.M.; de Oliveira, P.C. Pathogenic action of Penicillium species on mosquito vectors of human tropical diseases. J. Basic Microbiol. 1998, 38, 337–341. [Google Scholar] [CrossRef]
- Samson, R.; Seifert, K.; Kuijpers, A.; Houbraken, J.; Frisvad, J. Phylogenetic analysis of Penicillium subgenus Pencillium using partial beta-tubulin sequences. Stud. Mycol. 2004, 49, 175–200. [Google Scholar]
- Valdez, J.G.; Makuch, M.A.; Ordovini, A.F.; Masuelli, R.W.; Overy, D.P.; Piccolo, R.J. First report of Penicillium allii as a field pathogen of garlic (Allium sativum). Plant Pathol. 2006, 55, 583. [Google Scholar] [CrossRef]
- Cooper, C.; Isaac, S.; Jones, M.G.; Crowther, T.; Smith, B.M.; Collin, H.A. Morphological and biochemical response of carrots to Pythium violae, causative agent of cavity spot. Physiol. Mol. Plant Pathol. 2004, 64, 27–35. [Google Scholar] [CrossRef]
- Schrandt, J. Host range influence of nutrition, temperature, and pH on growth of Pythium violae from carrot. Plant Dis. 1994, 78, 335–338. [Google Scholar] [CrossRef]
- Cavalier-Smith, T. A revised six-kingdom system of life. Biol. Rev. Camb. Philos. Soc. 1998, 73, 203–266. [Google Scholar] [CrossRef]
- Chinn, R.Y.; Diamond, R.D. Generation of chemotactic factors by Rhizopus oryzae in the presence and absence of serum: Relationship to hyphal damage mediated by human neutrophils and effects of hyperglycemia and ketoacidosis. Infect. Immun. 1982, 38, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Neuhauser, S.; Kirchmair, M. Sorosphaerula Nom. n. for the Plasmodiophorid Genus Sorosphaera J. Schröter 1886 (Rhizaria: Endomyxa: Phytomyxea: Plasmodiophorida). J. Eukaryot. Microbiol. 2011, 58, 469–470. [Google Scholar] [CrossRef]
- Silva, P.C.; Mattox, K.R.; Blackwell, W.H. The generic name Hormidium as applied to green algae. Taxon 1972, 21, 639–645. [Google Scholar] [CrossRef]
- Wanner, M.; Elmer, M.; Kazda, M.; Xylander, W.E. Community assembly of terrestrial testate amoebae: How is the very first beginning characterized? Microb. Ecol. 2008, 56, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Watson, L.E.; Bates, P.L.; Evans, T.M.; Unwin, M.M.; Estes, J.R. Molecular phylogeny of subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol. Biol. 2002, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G. Giftige und gefährliche Spinentiere. Scorpiones, Acarina und Aranae. umanpathogene Skorpione, Milben und Spinnen. Westarp Wissenschaften, Ziemsen. 2020. ISBN: 3-89432-405-8. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201300064616 (accessed on 5 September 2021).
- Blaxter, M.L.; De Ley, P.; Garey, J.R.; Liu, L.X.; Scheldeman, P.; Vierstraete, A.; Vanfleteren, J.R.; Mackey, L.Y.; Dorris, M.; Frisse, L.M.; et al. A Molecular evolutionary framework for the phylum Nematoda. Nature 1998, 392, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Desnos-Ollivier, M.; Bretagne, S.; Dromer, F.; Lortholary, O.; Dannaoui, E. Molecular identification of black-grain mycetoma agents. J. Clin. Microbiol. 2006, 44, 3517–3523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairs, A.; Wardlaw, A.J.; Thompson, J.; Pashley, C.H. Guidelines on ambient intramural airborne fungal spores. J. Investig. Allergol. Clin. Immunol. 2010, 20, 490–498. [Google Scholar]
Characteristic | Sample * Number | Avg. according to Soil Quality Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | High | Low | |||
Major chemical factors and enzyme activity | pH (pH unit) | 4.55 | 6.11 | 7.06 | 6.02 | 6.09 | 7.05 | 6.11 | 6.15 | |
Soil organic matter (g/kg) | 18.00 | 14.34 | 8.00 | 8.04 | 16.51 | 14.33 | 14.34 | 12.98 | ||
Electrical conductivity (dS/m) | 0.16 | 0.12 | 0.20 | 0.04 | 0.06 | 0.07 | 0.12 | 0.11 | ||
Available Phosphorus (mg/kg) | 218.63 | 173.00 | 159.07 | 87.35 | 46.70 | 30.39 | 173.00 | 108.43 | ||
β-Glucosidase (mg PNP/kg h) | 19.85 | 15.93 | 3.66 | 7.54 | 13.73 | 13.26 | 15.93 | 11.61 | ||
β-Glucosaminidase (mg PNP/kg h) | 6.23 | 4.14 | 1.87 | 6.19 | 9.93 | 6.49 | 4.14 | 6.14 | ||
Acid phosphatase (mg PNP/kg h) | 123.37 | 56.26 | 60.6 | 68.95 | 91.91 | 118.04 | 56.26 | 92.57 | ||
Arylsulfatase (mg PNP/kg h) | 13.14 | 8.32 | 2.12 | 8.12 | 8.48 | 21.97 | 8.32 | 10.77 | ||
Soil quality * | Soil quality index | 0.79 | 2.40 | 1.51 | 1.26 | 1.42 | 0.54 | 2.40 | 1.10 | |
Score | 4.61 | 73.21 | 22.87 | 13.60 | 18.98 | 2.51 | 73.21 | 12.51 | ||
Evaluation | Low | High | Low | Low | Low | Low | High | Low | ||
Diversity index | Prokaryote (16S) | Chao1 | 1214.93 | 1818.16 | 981.90 | 1682.19 | 1686.97 | 1576.15 | 1818.16 | 1428.43 |
Observed species | 1000 | 1553 | 813 | 1434 | 1425 | 1345 | 1553 | 1203 | ||
Shannon | 8.39 | 9.22 | 7.52 | 8.73 | 8.73 | 8.70 | 9.22 | 8.41 | ||
Simpson | 0.99 | 1.00 | 0.98 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | ||
Eukaryote (18S) | Chao1 | 917.67 | 1184.79 | 687.72 | 1020.27 | 1066.56 | 960.62 | 1184.79 | 930.57 | |
Observed species | 794 | 1053 | 555 | 874 | 899 | 826 | 1053 | 789 | ||
Shannon | 7.97 | 8.33 | 7.14 | 7.01 | 7.59 | 6.57 | 8.33 | 7.26 | ||
Simpson | 0.99 | 0.99 | 0.99 | 0.97 | 0.98 | 0.91 | 0.99 | 0.97 |
Soil Quality Level | Rank | Division | Identification (Genus or Species-Level) | Rate (%) | ||
---|---|---|---|---|---|---|
High | Low | High-Low | ||||
High | 1 | Eu | Sorosphaerula veronicae | 5.30 | 0.40 | 4.90 |
2 | Eu | Pythium violae | 1.90 | 0.12 | 1.78 | |
3 | Pro | Nitrospira | 1.85 | 0.40 | 1.45 | |
4 | Eu | Triplonchida | 1.50 | 0.23 | 1.27 | |
5 | Eu | Heterocephalacria | 1.25 | 0.31 | 0.94 | |
6 | Pro | Polycyclovorans | 1.00 | 0.16 | 0.84 | |
7 | Pro | Geobacter | 1.20 | 0.37 | 0.83 | |
8 | Eu | Klebsormidium flaccidum | 0.65 | 0.02 | 0.63 | |
9 | Eu | Trinema | 0.85 | 0.23 | 0.62 | |
10 | Pro | MND1 | 1.70 | 1.09 | 0.61 | |
11 | Pro | RB41 | 3.00 | 2.42 | 0.58 | |
12 | Eu | Rhizopus | 0.55 | - | 0.55 | |
13 | Eu | Sorosphaerula veronicae | 0.55 | 0.04 | 0.51 | |
14 | Eu | Cercozoa | 0.50 | 0.08 | 0.42 | |
15 | Eu | Acanthamoeba | 0.55 | 0.15 | 0.40 | |
16 | Pro | Candidatus Nitrososphaera | 0.50 | 0.14 | 0.36 | |
17 | Pro | Geothrix | 0.40 | 0.05 | 0.35 | |
18 | Pro | Bacillus | 0.50 | 0.16 | 0.34 | |
19 | Pro | Candidatus Nitrosotalea | 0.75 | 0.44 | 0.31 | |
20 | Eu | Chaetonotida | 0.40 | 0.10 | 0.30 | |
Low | 20 | Eu | Archaeorhizomyces | - | 0.33 | −0.33 |
19 | Eu | Rhynchobodo | - | 0.35 | −0.35 | |
18 | Eu | Triplonchida | - | 0.40 | −0.40 | |
17 | Pro | Bryobacter | 0.85 | 1.28 | −0.43 | |
16 | Eu | Spumella | 0.40 | 0.85 | −0.45 | |
15 | Pro | Rhodanobacter | 0.95 | 1.44 | −0.49 | |
14 | Pro | Rhizobacter | 0.60 | 1.14 | −0.54 | |
12 | Pro | Plantactinospora | 0.35 | 0.90 | −0.55 | |
13 | Pro | Polaromonas | 0.10 | 0.65 | −0.55 | |
11 | Pro | Bradyrhizobium | 0.75 | 1.34 | −0.59 | |
10 | Eu | Pyrenochaeta | 0.15 | 0.79 | −0.64 | |
9 | Pro | Crenobacter | 0.05 | 0.78 | −0.73 | |
8 | Pro | Steroidobacter | 0.05 | 0.84 | −0.79 | |
7 | Eu | Vigna | - | 0.86 | −0.86 | |
6 | Pro | Pseudarthrobacter | 0.55 | 1.44 | −0.89 | |
5 | Pro | Pseudomonas brassicacearum | 0.05 | 1.27 | −1.22 | |
3 | Pro | Burkholderia-Caballeronia-Paraburkholderia | 1.05 | 2.70 | −1.65 | |
4 | Pro | Candidatus Udaeobacter | 1.05 | 2.70 | −1.65 | |
2 | Eu | Acari | - | 2.21 | −2.21 | |
1 | Eu | Artemisia | - | 4.43 | −4.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, H.; Yang, J.E.; Ryu, H.-S.; Moon, J.; Lee, J.-Y.; Lee, H. Comparison of Microbial Gene Diversity in Grassland Topsoil Depending on Soil Quality. Appl. Sci. 2021, 11, 9569. https://doi.org/10.3390/app11209569
Lee S, Kim H, Yang JE, Ryu H-S, Moon J, Lee J-Y, Lee H. Comparison of Microbial Gene Diversity in Grassland Topsoil Depending on Soil Quality. Applied Sciences. 2021; 11(20):9569. https://doi.org/10.3390/app11209569
Chicago/Turabian StyleLee, Siwon, Heejung Kim, Jae E Yang, Han-Sun Ryu, Jinah Moon, Jin-Young Lee, and Hyunji Lee. 2021. "Comparison of Microbial Gene Diversity in Grassland Topsoil Depending on Soil Quality" Applied Sciences 11, no. 20: 9569. https://doi.org/10.3390/app11209569
APA StyleLee, S., Kim, H., Yang, J. E., Ryu, H. -S., Moon, J., Lee, J. -Y., & Lee, H. (2021). Comparison of Microbial Gene Diversity in Grassland Topsoil Depending on Soil Quality. Applied Sciences, 11(20), 9569. https://doi.org/10.3390/app11209569