Feasibility of Near-Infrared Spectroscopy for Identification of L-Fucose and L-Proline—Towards Detecting Cancer Biomarkers from Saliva
Abstract
:1. Introduction
Near-Infrared Spectroscopy in Assessing Salivary Biomarkers
2. Materials and Methods
2.1. Materials
2.2. Near Infrared Spectroscopy
2.3. Spectral Analysis
2.4. Multivariate Analysis
2.5. Statistical Analysis
3. Results
Reproducibility of the Sample Deposition Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carreras-Torras, C.; Gay-Escoda, C. Techniques for Early Diagnosis of Oral Squamous Cell Carcinoma: Systematic Review. Med. Oral Patol. Oral Cir. Bucal 2015, 20, e305–e315. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.F.; Chen, Y.J.; Tsai, F.T.; Li, W.C.; Hsu, M.L.; Wang, D.H.; Yang, C.C. Current Insights into Oral Cancer Diagnostics. Diagnostics 2021, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
- Hamdoon, Z.; Jerjes, W.; Al-Delayme, R.; McKenzie, G.; Jay, A.; Hopper, C. Structural Validation of Oral Mucosal Tissue Using Optical Coherence Tomography. Head Neck Oncol. 2012, 4, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awan, K.H.; Morgan, P.R.; Warnakulasuriya, S. Evaluation of an Autofluorescence Based Imaging System (VELscopeTM) in the Detection of Oral Potentially Malignant Disorders and Benign Keratoses. Oral Oncol. 2011, 47, 274–277. [Google Scholar] [CrossRef]
- Emran, S.; Hurskainen, M.; Tomppo, L.; Lappalainen, R.; Kullaa, A.M.; Myllymaa, S. Bioimpedance Spectroscopy and Spectral Camera Techniques in Detection of Oral Mucosal Diseases: A Narrative Review of the State-of-the-Art. J. Med. Eng. Technol. 2019, 43, 1–18. [Google Scholar] [CrossRef]
- Stephen, M.M.; Jayanthi, J.L.; Unni, N.G.; Kolady, P.E.; Beena, V.T.; Jeemon, P.; Subhash, N. Diagnostic Accuracy of Diffuse Reflectance Imaging for Early Detection of Pre-Malignant and Malignant Changes in the Oral Cavity: A Feasibility Study. BMC Cancer 2013, 13, 278–286. [Google Scholar] [CrossRef] [Green Version]
- McNamara, K.K.; Martin, B.D.; Evans, E.W.; Kalmar, J.R. The Role of Direct Visual Fluorescent Examination (VELscope) in Routine Screening for Potentially Malignant Oral Mucosal Lesions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 636–643. [Google Scholar] [CrossRef]
- Elvers, D.; Braunschweig, T.; Hilgers, R.D.; Ghassemi, A.; Möhlhenrich, S.C.; Hölzle, F.; Gerressen, M.; Modabber, A. Margins of Oral Leukoplakia: Autofluorescence and Histopathology. Br. J. Oral Maxillofac. Surg. 2015, 53, 164–169. [Google Scholar] [CrossRef]
- Huang, T.T.; Huang, J.S.; Wang, Y.Y.; Chen, K.C.; Wong, T.Y.; Chen, Y.C.; Wu, C.W.; Chan, L.P.; Lin, Y.C.; Kao, Y.H.; et al. Novel Quantitative Analysis of Autofluorescence Images for Oral Cancer Screening. Oral Oncol. 2017, 68, 20–26. [Google Scholar] [CrossRef]
- Ganga, R.S.; Gundre, D.; Bansal, S.; Shirsat, P.M.; Prasad, P.; Desai, R.S. Evaluation of the Diagnostic Efficacy and Spectrum of Autofluorescence of Benign, Dysplastic and Malignant Lesions of the Oral Cavity Using VELscope. Oral Oncol. 2017, 75, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Bremmer, J.F.; Graveland, A.P.; Brink, A.; Braakhuis, B.J.M.; Kuik, D.J.; Leemans, C.R.; Bloemena, E.; Van Der Waal, I.; Brakenhoff, R.H. Screening for Oral Precancer with Noninvasive Genetic Cytology. Cancer Prev. Res. 2009, 2, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Jerjes, W.; Upile, T.; Conn, B.; Hamdoon, Z.; Betz, C.S.; McKenzie, G.; Radhi, H.; Vourvachis, M.; Maaytah, M.E.; Sandison, A.; et al. In Vitro Examination of Suspicious Oral Lesions Using Optical Coherence Tomography. Br. J. Oral Maxillofac. Surg. 2010, 48, 18–25. [Google Scholar] [CrossRef]
- Liao, C.-T.; Fan, K.-H.; Lin, C.-Y.; Wang, H.-M.; Huang, S.-F.; Chen, I.-H.; Kang, C.-J.; Ng, S.-H.; Hsueh, C.; Lee, L.-Y.; et al. Impact of a Second FDG PET Scan before Adjuvant Therapy for the Early Detection of Residual/Relapsing Tumours in High-Risk Patients with Oral Cavity Cancer and Pathological Extracapsular Spread. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Siesler, H.; Ozaki, Y.; Kawata, S.; Heise, H.M. Near-Infrared Spectroscopy: Principles, Instruments, Applications, 1st ed.; Wiley-VHC: Hoboken, NJ, USA, 2002; ISBN 3-527-30149-6. [Google Scholar]
- McIntosh, L.M.; Summers, R.; Jackson, M.; Mantsch, H.H.; Mansfield, J.R.; Howlett, M.; Crowson, A.N.; Toole, J.W.P. Towards Non-Invasive Screening of Skin Lesions by near-Infrared Spectroscopy. J. Investig. Dermatol. 2001, 116, 175–181. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, L.M.; Jackson, M.; Mantsch, H.H.; Mansfield, J.R.; Crowson, A.N.; Toole, J.W.P. Near-Infrared Spectroscopy for Dermatological Applications. Vib. Spectrosc. 2002, 28, 53–58. [Google Scholar] [CrossRef]
- Bodén, I.; Nyström, J.; Lundskog, B.; Zazo, V.; Geladi, P.; Lindholm-Sethson, B.; Naredi, P. Non-Invasive Identification of Melanoma with near-Infrared and Skin Impedance Spectroscopy. Ski. Res. Technol. 2013, 19, e473–e478. [Google Scholar] [CrossRef] [PubMed]
- Bodén, I.; Larsson, W.; Nilsson, D.; Forssell, E.; Naredi, P.; Lindholm-Sethson, B. In Vivo Skin Measurements with a Novel Probe Head for Simultaneous Skin Impedance and Near-Infrared Spectroscopy. Ski. Res. Technol. 2011, 17, 494–504. [Google Scholar] [CrossRef]
- Hägerlind, E.; Falk, M.; Löfstedt, T.; Lindholm-Sethson, B.; Boden, I. Near Infrared and Skin Impedance Spectroscopy—A Possible Support in the Diagnostic Process of Skin Tumours in Primary Health Care. Ski. Res. Technol. 2015, 21, 493–499. [Google Scholar] [CrossRef]
- Scott, D.A.; Renaud, D.E.; Krishnasamy, S.; Meriç, P.; Buduneli, N.; Çetinkalp, Ş.; Liu, K.Z. Diabetes-Related Molecular Signatures in Infrared Spectra of Human Saliva. Diabetol. Metab. Syndr. 2010, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Huck, C.W.; Ozaki, Y.; Huck-Pezzei, V.A. Critical Review upon the Role and Potential of Fluorescence and Near-Infrared Imaging and Absorption Spectroscopy in Cancer Related Cells, Serum, Saliva, Urine and Tissue Analysis. Curr. Med. Chem. 2016, 3052–3077. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020, 25, 2948. [Google Scholar] [CrossRef] [PubMed]
- Menzies, G.E.; Fox, H.R.; Marnane, C.; Pope, L.; Prabhu, V.; Winter, S.; Derrick, A.V.; Lewis, P.D. Fourier Transform Infrared for Noninvasive Optical Diagnosis of Oral, Oropharyngeal, and Laryngeal Cancer. Transl. Res. 2014, 163, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.R.; Scholz, T.A.; Ermakov, I.V.; McClane, R.W.; Khachik, F.; Gellermann, W.; Pershing, L.K. Non-Invasive Raman Spectroscopic Detection of Carotenoids in Human Skin. J. Investig. Dermatol. 2000, 115, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruo, K.; Yamada, Y. Near-Infrared Noninvasive Blood Glucose Prediction without Using Multivariate Analyses: Introduction of Imaginary Spectra Due to Scattering Change in the Skin. J. Biomed. Opt. 2015, 20, 047003. [Google Scholar] [CrossRef]
- Marbach, R.; Koschinsky, T.; Gries, F.A.; Heise, H.M. Noninvasive Blood Glucose Assay by Near-Infrared Diffuse Reflectance Spectroscopy of the Human Inner Lip. Appl. Spectrosc. 1993, 47, 875–881. [Google Scholar] [CrossRef]
- Heise, H.M.; Bittner, A.; Marbach, R. Near-Infrared Reflectance Spectroscopy for Noninvasive Monitoring of Metabolites. Clin. Chem. Lab. Med. 2000, 38, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Z.; Xiang, X.M.; Man, A.; Sowa, M.G.; Cholakis, A.; Ghiabi, E.; Singer, D.L.; Scott, D.A. In Vivo Determination of Multiple Indices of Periodontal Inflammation by Optical Spectroscopy. J. Periodontal Res. 2009, 44, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Bodén, I. Near Infrared and Skin Impedance Spectroscopic in Vivo Measurements on Human Skin Development of a Diagnostic Tool for Skin Cancer. Umeå Univ. Med. Diss. 2012, 1466. [Google Scholar]
- Hawrysz, D.J.; Sevick-Muraca, E.M. Developments toward Diagnostic Breast Cancer Imaging Using Near-Infrared Optical Measurements and Fluorescent Contrast Agents. Neoplasia 2000, 2, 388–417. [Google Scholar] [CrossRef] [Green Version]
- Porto-Mascarenhas, E.C.; Assad, D.X.; Chardin, H.; Gozal, D.; De Luca Canto, G.; Acevedo, A.C.; Guerra, E.N.S. Salivary Biomarkers in the Diagnosis of Breast Cancer: A Review. Crit. Rev. Oncol. Hematol. 2017, 110, 62–73. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Bitar, R.A.; Silveira, L.; Zângaro, R.A.; Martin, A.A. Near-Infrared Raman Spectroscopy for Oral Carcinoma Diagnosis. Photomed. Laser Surg. 2006, 24, 348–353. [Google Scholar] [CrossRef]
- Rekha, P.; Aruna, P.; Bharanidharan, G.; Koteeswaran, D.; Baludavid, M.; Ganesan, S. Near Infrared Raman Spectroscopic Characterization of Blood Plasma of Normal, Oral Premalignant and Malignant Conditions—A Pilot Study. J. Raman Spectrosc. 2015, 46, 735–743. [Google Scholar] [CrossRef]
- Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva Specimen: A New Laboratory Tool for Diagnostic and Basic Investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, J.J.W.; Singh, S.P.; Herrala, M.; Lappalainen, R.; Myllymaa, S.; Kullaa, A.M. Salivary Metabolomics in the Diagnosis of Oral Cancer and Periodontal Diseases. J. Periodontal Res. 2016, 51, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, J.J.W. Metabolic Profiling of Saliva in Patients with Primary Sjögren’s Syndrome. J. Postgenom. Drug Biomark. Dev. 2012, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Gualtero, D.F.; Suarez Castillo, A. Biomarkers in Saliva for the Detection of Oral Squamous Cell Carcinoma and Their Potential Use for Early Diagnosis: A Systematic Review. Acta Odontol. Scand. 2016, 74, 170–177. [Google Scholar] [CrossRef]
- Murayama, K.; Tomida, M.; Yoshisato, O.; Toshihiro, M.; Jun- Ichi, I. Principal Component Analysis for Diagnosis of Oral Cancer Using Capillary Near-Infrared Spectroscopy of Onedrop of Human Saliva. ITE Lett. Batter. New Technol. Med. 2005, 6, 603–606. [Google Scholar]
- Fernandes, L.L.; Pacheco, V.B.; Borges, L.; Athwal, H.K.; de Paula Eduardo, F.; Bezinelli, L.; Correa, L.; Jimenez, M.; Dame-Teixeira, N.; Lombaert, I.M.A.; et al. Saliva in the Diagnosis of COVID-19: A Review and New Research Directions. J. Dent. Res. 2020, 99, 1435–1443. [Google Scholar] [CrossRef]
- Mikkonen, J.J.W.; Raittila, J.; Rieppo, L.; Lappalainen, R.; Kullaa, A.M.; Myllymaa, S. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis. Appl. Spectrosc. 2016, 70, 1502–1510. [Google Scholar] [CrossRef]
- Shpitzer, T.; Bahar, G.; Feinmesser, R.; Nagler, R.M. A Comprehensive Salivary Analysis for Oral Cancer Diagnosis. J. Cancer Res. Clin. Oncol. 2007, 133, 613–617. [Google Scholar] [CrossRef]
- Baghizadeh Fini, M. Oral Saliva and COVID-19. Oral Oncol. 2020, 108, 104821. [Google Scholar] [CrossRef]
- Hung, K.F.; Sun, Y.C.; Chen, B.H.; Lo, J.F.; Cheng, C.M.; Chen, C.Y.; Wu, C.H.; Kao, S.Y. New COVID-19 Saliva-Based Test: How Good Is It Compared with the Current Nasopharyngeal or Throat Swab Test? J. Chin. Med. Assoc. 2020, 83, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, P. Saliva as a Potential Diagnostic Specimen for COVID-19 Testing. J. Craniofac. Surg. 2020, 31, e653–e655. [Google Scholar] [CrossRef]
- Mikkonen, J.J.W.; Singh, S.P.; Akhi, R.; Salo, T.; Lappalainen, R.; González-Arriagada, W.A.; Ajudarte Lopes, M.; Kullaa, A.M.; Myllymaa, S. Potential Role of Nuclear Magnetic Resonance Spectroscopy to Identify Salivary Metabolite Alterations in Patients with Head and Neck Cancer. Oncol. Lett. 2018, 16, 6795–6800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Sharma, E.; Prabhu, V.; Pai, V.; D’Souza, J.; Harish, S.; Jose, M. Salivary L-Fucose as a Biomarker for Oral Potentially Malignant Disorders and Oral Cancer. J. Cancer Res. Ther. 2020, 16, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Rai, N.P.; Anekar, J.; Shivaraja Shankara, Y.M.; Divakar, D.D.; Al Kheraif, A.A.; Ramakrishnaiah, R.; Sebastian, R.; Raj, A.C.; Al-Hazmi, A.; Mustafa, S.M. Comparison of Serum Fucose Levels in Leukoplakia and Oral Cancer Patients. Asian Pac. J. Cancer Prev. 2015, 16, 7497–7500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Arias, L.R.; Lane, T.S.; Yancey, M.D.; Mamouni, J. Real-Time Electrical Impedance-Based Measurement to Distinguish Oral Cancer Cells and Non-Cancer Oral Epithelial Cells. Anal. Bioanal. Chem. 2011, 399, 1823–1833. [Google Scholar] [CrossRef]
- Arias, L.R.; Perry, C.A.; Yang, L. Real-Time Electrical Impedance Detection of Cellular Activities of Oral Cancer Cells. Biosens. Bioelectron. 2010, 25, 2225–2231. [Google Scholar] [CrossRef]
- Sarin, J.K.; Amissah, M.; Brommer, H.; Argüelles, D.; Töyräs, J.; Afara, I.O. Near Infrared Spectroscopic Mapping of Functional Properties of Equine Articular Cartilage. Ann. Biomed. Eng. 2016, 44, 3335–3345. [Google Scholar] [CrossRef]
- Sarin, J.K.; Rieppo, L.; Brommer, H.; Afara, I.O.; Saarakkala, S.; Töyräs, J. Combination of Optical Coherence Tomography and near Infrared Spectroscopy Enhances Determination of Articular Cartilage Composition and Structure. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sarin, J.K. Evaluation of Chondral Injuries Using near Infrared Spectroscopy; University of Eastern Finland: Kuopio, Finland, 2018. [Google Scholar]
- Murayama, K.; Yuan, B.; Ozaki, Y.; Tomida, M.; Era, S. Near-Infrared Spectroscopy for Liquids of Microliter Volume Using Capillaries with Wall Transmission. Analyst 2003, 128, 957–959. [Google Scholar] [CrossRef] [PubMed]
- Kober, S.E. Hemodynamic Signal Changes during Saliva and Water Swallowing: A near-Infrared Spectroscopy Study. J. Biomed. Opt. 2018, 23, 1. [Google Scholar] [CrossRef]
- Sato, H.; Obata, A.N.; Moda, I.; Ozaki, K.; Yasuhara, T.; Yamamoto, Y.; Kiguchi, M.; Maki, A.; Kubota, K.; Koizumi, H. Application of Near-Infrared Spectroscopy to Measurement of Hemodynamic Signals Accompanying Stimulated Saliva Secretion. J. Biomed. Opt. 2011, 16, 047002. [Google Scholar] [CrossRef] [PubMed]
- Zapata, F.; Gregorio, I. Body Fluids and Spectroscopic Techniques in Forensics: A Perfect Match? J. Forensic Med. 2016, 1. [Google Scholar] [CrossRef]
- Musa, M.A.W.; Ahmed, B.M. Evaluation of Salivary α - L-Fucose and Its Related Parameters in Periodontitis. Zanco J. Med. Sci. 2013, 17, 563–568. [Google Scholar]
- Kumar, S.; Saxena, M.; Srinivas, K.; Singh, V. Fucose: A Biomarker in Grading of Oral Cancer. Natl. J. Maxillofac. Surg. 2015, 6, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Arriagada, W.A.; Ramos, L.M.A.; Silva, A.A.; Vargas, P.A.; Coletta, R.D.; Bingle, L.; Lopes, M.A. Salivary BPIFA1 (SPLUNC1) and BPIFA2 (SPLUNC2 A) Are Modified by Head and Neck Cancer Radiotherapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Sarin, J.K.; te Moller, N.C.R.; Mancini, I.A.D.; Brommer, H.; Visser, J.; Malda, J.; van Weeren, P.R.; Afara, I.O.; Töyräs, J. Arthroscopic near Infrared Spectroscopy Enables Simultaneous Quantitative Evaluation of Articular Cartilage and Subchondral Bone in Vivo. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cheong, A. ConfusionmatStats(Group, Grouphat). Available online: https://www.mathworks.com/matlabcentral/fileexchange/46035-confusionmatstats-group-grouphat (accessed on 19 March 2021).
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 8, ISBN 9780470011140. [Google Scholar]
- Wu, P.; Siesler, H.W. The Assignment of Overtone and Combination Bands in the near Infrared Spectrum of Polyamide 11. J. Near Infrared Spectrosc. 1999, 7, 65–76. [Google Scholar] [CrossRef]
- Robert, C.; Cadet, F. Analysis of Near-Infrared Spectra of Some Carbohydrates. Appl. Spectrosc. Rev. 1998, 33, 253–266. [Google Scholar] [CrossRef]
- Bayly, J.G.; Kartha, V.B.; Stevens, W.H. The Absorption Spectra of Liquid Phase H2O, HDO and D2O from 0·7 Μm to 10 Μm. Infrared Phys. 1963, 3, 211–222. [Google Scholar] [CrossRef]
- Bakhsheshi, M.F.; Diop, M.; St. Lawrence, K.; Lee, T.-Y. Monitoring Brain Temperature by Time-Resolved near-Infrared Spectroscopy: Pilot Study. J. Biomed. Opt. 2014, 19, 057005. [Google Scholar] [CrossRef] [PubMed]
Solution | mg/mL | µM | Marked in Text |
---|---|---|---|
L-Fucose 1 | 50 | 3.05 × 105 | F1 |
L-Fucose 2 | 5 | 3.05 × 104 | F2 |
L-Fucose 3 | 0.5 | 3.05 × 103 | F3 |
L-Fucose 4 | 0.05 | 3.05 × 102 | F4 |
L-Proline 1 | 50 | 4.34 × 105 | P1 |
L-Proline 2 | 5 | 4.34 × 104 | P2 |
L-Proline 3 | 0.5 | 4.34 × 103 | P3 |
L-Proline 4 | 0.05 | 4.34 × 102 | P4 |
Metabolite | OSCC [µM] | Controls [µM] |
---|---|---|
Acetate | 2559.8−9344.8 | 1977.7−5239.5 |
Alanine | 47.1−515.9 | 53.0−173.0 |
Butanol | 17.2−190.5 | 16.8−84.3 |
Butyrate | 33.9−266.4 | 25.9−128.4 |
Choline | 12.2−43.7 | 14.2−24.7 |
Formate | 191.4−426.2 | 77.0−433.3 |
L-fucose | 302.0−1527.2 | 100.6−284.7 |
Glycine | 103.2−719.1 | 241.1−923.6 |
Lactate | 71.5−1132.9 | 140.4−324.6 |
Methanol | 36.6−208.1 | 51.4−121.5 |
Methylamine | 1.7−66.5 | 1.9−5.7 |
Phenylalanine | 41.9−147.6 | 59.1−123.6 |
L-proline | 104.1−799.9 | 318.5−1244.3 |
Propionate | 319.9−2157.6 | 251.1−1028.4 |
Pyruvic acid | 12.6−73.1 | 7.2−33.3 |
Succinate | 24.5−214.3 | 47.1−71.9 |
Taurine | 72.1−195.4 | 104.7−205.1 |
Tyrosine | 42.3−173.5 | 55.3−165.5 |
1,2-propanediol | 32.7−2465.4 | 21.7−54.1 |
Wavelength Area (nm) Black | Wavelength Area (nm) Green | NIR Absorption Bands Molecular Groups [62,63,64] |
---|---|---|
695–696 | 695–696 | |
718–719 | 718–719 | 3rd overtone CH stretching |
786 | 3rd overtone CH stretching | |
869–888 | 880–888 | 3rd overtone CH stretching |
1011–1029 | 1019–1029 | 2nd overtone OH stretching & water |
Wavelength Area (nm) Black | Wavelength Area (nm) Green | NIR Absorption Bands Molecular Groups [62,63,64] |
---|---|---|
725 | 725 | 4th overtone CH stretching |
781–784 | 778–796 | 3rd overtone NH stretching |
819–820 | 819–820 | 3rd overtone NH stretching |
850–864 | 850–864 | 3rd overtone CH stretching |
1050 | 2nd overtone N–H stretching, 2nd overtone O–H stretching | |
1906 | 1906 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurskainen, M.O.; Sarin, J.K.; Myllymaa, S.; González-Arriagada, W.A.; Kullaa, A.; Lappalainen, R. Feasibility of Near-Infrared Spectroscopy for Identification of L-Fucose and L-Proline—Towards Detecting Cancer Biomarkers from Saliva. Appl. Sci. 2021, 11, 9662. https://doi.org/10.3390/app11209662
Hurskainen MO, Sarin JK, Myllymaa S, González-Arriagada WA, Kullaa A, Lappalainen R. Feasibility of Near-Infrared Spectroscopy for Identification of L-Fucose and L-Proline—Towards Detecting Cancer Biomarkers from Saliva. Applied Sciences. 2021; 11(20):9662. https://doi.org/10.3390/app11209662
Chicago/Turabian StyleHurskainen, Miia O., Jaakko K. Sarin, Sami Myllymaa, Wilfredo A. González-Arriagada, Arja Kullaa, and Reijo Lappalainen. 2021. "Feasibility of Near-Infrared Spectroscopy for Identification of L-Fucose and L-Proline—Towards Detecting Cancer Biomarkers from Saliva" Applied Sciences 11, no. 20: 9662. https://doi.org/10.3390/app11209662
APA StyleHurskainen, M. O., Sarin, J. K., Myllymaa, S., González-Arriagada, W. A., Kullaa, A., & Lappalainen, R. (2021). Feasibility of Near-Infrared Spectroscopy for Identification of L-Fucose and L-Proline—Towards Detecting Cancer Biomarkers from Saliva. Applied Sciences, 11(20), 9662. https://doi.org/10.3390/app11209662