Short-Term Effects of the Repeated Exposure to Trip-like Perturbations on Inter-Segment Coordination during Walking: An UCM Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants, Experimental Setup, and Protocol
2.2. Data Collection and Processing
2.3. UCM Implementation
- coincides with the MTC;
- , , and refer to length, elevation, and azimuth angles of the m body segment;
- refers to the ordered series of body segments, from the left foot to the right one.
2.4. Statistical Analysis
3. Results
4. Discussion
Limits of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winter, D.A. Foot Trajectory in Human Gait-a Precise and Multifactorial Motor Control Task. Phys. Ther. 1992, 72, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Barrett, R.S.; Mills, P.; Begg, R. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture 2010, 32, 429–435. [Google Scholar] [CrossRef]
- Begg, R.; Best, R.; Dell’Oro, L.; Taylor, S. Minimum foot clearance during walking: Strategies for the minimisation of trip-related falls. Gait Posture 2007, 25, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Blake, A.J.; Morgan, K.; Bendall, M.J.; Dallosso, H.; Ebrahim, S.B.J.; Arie, T.H.D.; Fentem, P.H.; Bassey, E.J. Falls by elderly people at home: Prevalence and associated factors. Age Ageing 1988, 17, 365–372. [Google Scholar] [CrossRef]
- Killeen, T.; Easthope, C.S.; Demkó, L.; Filli, L.; Lőrincz, L.; Linnebank, M.; Curt, A.; Zörner, B.; Bolliger, M. Minimum toe clearance: Probing the neural control of locomotion. Sci. Rep. 2017, 7, 1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, B.W.; Lloyd, J.D.; Lee, W.E. The effects of everyday concurrent tasks on overground minimum toe clearance and gait parameters. Gait Posture 2010, 32, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Mills, P.M.; Barrett, R.S.; Morrison, S. Toe clearance variability during walking in young and elderly men. Gait Posture 2008, 28, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Moosabhoy, M.A.; Gard, S.A. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 2006, 24, 493–501. [Google Scholar] [CrossRef]
- Miyake, T.; Aprigliano, F.; Sugano, S.; Micera, S.; Monaco, V. Repeated exposure to tripping like perturbations elicits more precise control and lower toe clearance of the swinging foot during steady walking. Hum. Mov. Sci. 2021, 76, 102775. [Google Scholar] [CrossRef]
- Latash, M.L.; Scholz, J.P.; Schoner, G. Toward a new theory of motor synergies. Mot. Control 2007, 11, 276–308. [Google Scholar] [CrossRef] [Green Version]
- Scholz, J.P.; Schoner, G. The uncontrolled manifold concept: Identifying control variables for a functional task. Exp. Brain Res. 1999, 126, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Lofrumento, M.; Tropea, P.; Picardi, M.; Antoniotti, P.; Micera, S.; Corbo, M.; Monaco, V. Effects of gait rehabilitation on motor coordination in stroke survivors: An UCM-based approach. Exp. Brain Res. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Aprigliano, F.; Micera, S.; Monaco, V. Pre-Impact Detection Algorithm to Identify Tripping Events Using Wearable Sensors. Sensors 2019, 19, 3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghese, N.A.; Bianchi, L.; Lacquaniti, F. Kinematic determinants of human locomotion. J. Physiol. 1996, 494 Pt 3, 863–879. [Google Scholar] [CrossRef] [Green Version]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor control programs and walking. Neuroscientist 2006, 12, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Scholz, J.P.; Schoner, G.; Latash, M.L. Identifying the control structure of multijoint coordination during pistol shooting. Exp. Brain Res. 2000, 135, 382–404. [Google Scholar] [CrossRef]
- Cappellini, G.; Ivanenko, Y.P.; Dominici, N.; Poppele, R.E.; Lacquaniti, F. Motor patterns during walking on a slippery walkway. J. Neurophysiol. 2010, 103, 746–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtine, G.; Schieppati, M. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans. J. Neurophysiol. 2004, 91, 1524–1535. [Google Scholar] [CrossRef] [Green Version]
- Ivanenko, Y.P.; Cappellini, G.; Dominici, N.; Poppele, R.E.; Lacquaniti, F. Modular control of limb movements during human locomotion. J. Neurosci. 2007, 27, 11149–11161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, J.W.; Prentice, S.D. Intersegmental coordination while walking up inclined surfaces: Age and ramp angle effects. Exp. Brain Res. 2008, 189, 249–255. [Google Scholar] [CrossRef]
- Aprigliano, F.; Martelli, D.; Tropea, P.; Pasquini, G.; Micera, S.; Monaco, V. Aging does not affect the intralimb coordination elicited by slip-like perturbation of different intensities. J. Neurophysiol. 2017, 118, 1739–1748. [Google Scholar] [CrossRef] [Green Version]
- Aprigliano, F.; Martelli, D.; Micera, S.; Monaco, V. Intersegmental coordination elicited by unexpected multidirectional slipping-like perturbations resembles that adopted during steady locomotion. J. Neurophysiol. 2016, 115, 728–740. [Google Scholar] [CrossRef]
- Rosenblatt, N.J.; Hurt, C.P. Recommendation for the minimum number of steps to analyze when performing the uncontrolled manifold analysis on walking data. J. Biomech. 2019, 85, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Monaco, V.; Aprigliano, F.; Lofrumento, M.; Martelli, D.; Micera, S.; Agrawal, S. Uncontrolled manifold analysis of the effects of a perturbation-based training on the organization of leg joint variance in cerebellar ataxia. Exp. Brain Res. 2021, 239, 501–513. [Google Scholar] [CrossRef]
- Bell, A.L.; Pedersen, D.R.; Brand, R.A. A comparison of the accuracy of several hip center location prediction methods. J. Biomech. 1990, 23, 617–621. [Google Scholar] [CrossRef]
- Kao, P.C.; Srivastava, S. Mediolateral footpath stabilization during walking in people following stroke. PLoS ONE 2018, 13, e0208120. [Google Scholar] [CrossRef]
- Shafizadeh, M.; Wheat, J.; Kelley, J.; Nourian, R. Stroke survivors exhibit stronger lower extremity synergies in more challenging walking conditions. Exp. Brain Res. 2019, 237, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Rosenblatt, N.; Latash, M.L.; Grabiner, M.D. The effects of age on stabilization of the mediolateral trajectory of the swing foot. Gait Posture 2013, 38, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, N.J.; Hurt, C.P.; Latash, M.L.; Grabiner, M.D. An apparent contradiction: Increasing variability to achieve greater precision? Exp. Brain Res. 2014, 232, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Vaz, D.V.; Pinto, V.A.; Junior, R.R.D.S.; Mattos, D.J.; Mitra, S. Coordination in adults with neurological impairment-A systematic review of uncontrolled manifold studies. Gait Posture 2019, 69, 66–78. [Google Scholar] [CrossRef]
Variable | Trial A | Trial B | Trial C | p-Values | |||
---|---|---|---|---|---|---|---|
Baseline | Post-pert. | Baseline | Post-pert. | Baseline | Post-pert. | ||
MTCav (mm) | 34.8 ± 9.1 | 31.1 ± 10.2 | 33.1 ± 10.0 | 30.9 ± 8.9 | 32.6 ± 8.3 | 31.1 ± 8.6 | pT = 0.966 pSp = 0.001 pint = 0.197 |
MTCSD (mm) | 3.4 ± 1.0 | 3.1 ± 1.0 | 3. 3 ± 1.4 | 3.0 ± 0.7 | 3.4 ± 1.1 | 3.1 ± 0.9 | pT = 0.602 pSp = 0.012 pint = 0.795 |
(rad2) | 0.16 ± 0.24 | 0.19 ± 0.18 | 0.11 ± 0.14 | 0.16 ± 0.17 | 0.13 ± 0.18 | 0.18 ± 0.18 | pT = 0.841 pSp = 0.159 pint = 0.972 |
103 × (rad2) | 0.08 ± 0.04 | 0.11 ± 0.08 | 0.14 ± 0.22 | 0.13 ± 0.15 | 0.11 ± 0.15 | 0.09 ± 0.06 | pT = 0.498 pSp = 0.712 pint = 0.769 |
10−3 × Ratio (adim) | 1.58 ± 2.06 | 2.92 ± 3.73 | 1.56 ± 2.45 | 2.15 ± 3.23 | 1.65 ± 2.62 | 2.86 ± 4.14 | pT = 0.881 pSp = 0.015 pint = 0.926 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaco, V.; Zabban, C.; Miyake, T. Short-Term Effects of the Repeated Exposure to Trip-like Perturbations on Inter-Segment Coordination during Walking: An UCM Analysis. Appl. Sci. 2021, 11, 9663. https://doi.org/10.3390/app11209663
Monaco V, Zabban C, Miyake T. Short-Term Effects of the Repeated Exposure to Trip-like Perturbations on Inter-Segment Coordination during Walking: An UCM Analysis. Applied Sciences. 2021; 11(20):9663. https://doi.org/10.3390/app11209663
Chicago/Turabian StyleMonaco, Vito, Clara Zabban, and Tamon Miyake. 2021. "Short-Term Effects of the Repeated Exposure to Trip-like Perturbations on Inter-Segment Coordination during Walking: An UCM Analysis" Applied Sciences 11, no. 20: 9663. https://doi.org/10.3390/app11209663
APA StyleMonaco, V., Zabban, C., & Miyake, T. (2021). Short-Term Effects of the Repeated Exposure to Trip-like Perturbations on Inter-Segment Coordination during Walking: An UCM Analysis. Applied Sciences, 11(20), 9663. https://doi.org/10.3390/app11209663