A Dosimetric Analysis of Reduction Cardiac Dose with Lead Shielding in Breast Cancer Radiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Source
2.2. The CIRS ATOM Anthropomorphic Phantoms
2.3. Tangential 3D-CRT Treatment Planning
2.4. IMRT Treatment Planning
2.5. VMAT Treatment Planning
2.6. Optically Stimulated Luminescence Dosimeter System
2.7. Dosimeter Distribution of CIRS ATOM Phantom
2.8. Data Analysis
3. Results
3.1. PTV Dose Evaluation
3.2. Comparison of OARs in Three Techniques on Dosimetry
3.3. Comparison of TPS Doses with Doses Measured by OSLDs
3.4. Radiation Dose Difference after the Application of Lead Shields
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muren, L.P.; Maurstad, G.; Hafslund, R.; Anker, G.; Dahl, O. Cardiac and pulmonary doses and complication probabilities in standard and conformal tangential irradiation in conservative management of breast cancer. Radiother. Oncol. 2002, 62, 173–183. [Google Scholar] [CrossRef]
- Sas-Korczyńska, B.; Śladowska, A.; Rozwadowska-Bogusz, B.; Dyczek, S.; Lesiak, J.; Kokoszka, A.; Korzeniowski, S. Comparison between intensity modulated radiotherapy (IMRT) and 3D tangential beams technique used in patients with early-stage breast cancer who received breast-conserving therapy. Rep. Pract. Oncol. Radiother. 2010, 15, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Donovan, E.; Bleakley, N.; Denholm, E.; Evans, P.; Gothard, L.; Hanson, J.; Yarnold, J. Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother. Oncol. 2007, 82, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Mukesh, M.B.; Barnett, G.C.; Wilkinson, J.S.; Moody, A.M.; Wilson, C.; Dorling, L.; Coles, C.E. Randomized controlled trial of intensity-modulated radiotherapy for early breast cancer: 5-year results confirm superior overall cosmesis. J. Clin. Oncol. 2013, 31, 4488–4495. [Google Scholar] [CrossRef] [PubMed]
- McCormick, B.; Hunt, M. Intensity-modulated radiation therapy for breast: Is it for everyone? Semin. Radiat. Oncol. 2011, 21, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Staffurth, J. A review of the clinical evidence for intensity-modulated radiotherapy. Clin. Oncol. 2010, 22, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Kestin, L.L.; Sharpe, M.B.; Frazier, R.C.; Vicini, F.A.; Yan, D.; Matter, R.C.; Wong, J.W. Intensity modulation to improve dose uniformity with tangential breast radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 295–296. [Google Scholar] [CrossRef]
- Takeda, A.T.; Shigematsu, N.; Kondo, M.; Amemiya, A.; Kawaguchi, O.; Sato, M.; Tsukamoto, N. The modified tangential irradiation technique for breast cancer: How to cover the entire axillary region. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 815–822. [Google Scholar] [CrossRef]
- Ohashi, T.; Takeda, A.; Shigematsu, N.; Fukada, J.; Sanuki, N.; Amemiya, A.; Kubo, A. Dose distribution analysis of axillary lymph nodes for three-dimensional conformal radiotherapy with a field-in-field technique for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 80–87. [Google Scholar] [CrossRef]
- Strauss, J.B.; Kirk, M.C.; Chen, S.S.; Shah, A.P.; Gielda, B.T.; Chu, J.C.; Dickler, A. A virtual matching technique for three-field breast irradiation using 3-D planning. Phys. Med. 2009, 25, 212–215. [Google Scholar] [CrossRef]
- Jin, G.H.; Chen, L.X.; Deng, X.W.; Liu, X.W.; Huang, Y.; Huang, X.B. A comparative dosimetric study for treating left-sided breast cancer for small breast size using five different radiotherapy techniques: Conventional tangential field, filed-in-filed, tangential-IMRT, multi-beam IMRT and VMAT. Radiat. Oncol. 2013, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, F.R.; Colgan, R.M.; Donovan, E.M.; McNair, H.A.; Carr, K.; Evans, P.M.; Kirby, A.M. The UK HeartSpare Study (Stage IB): Randomised comparison of a voluntary breath-hold technique and prone radiotherapy after breast conserving surgery. Radiother. Oncol. 2015, 114, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Anderson, S.; Bryant, J.; Margolese, R.G.; Deutsch, M.; Fisher, E.R.; Wolmark, N. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 2002, 347, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Lind, P.A.; Wennberg, B.; Gagliardi, G.; Fornander, T. Pulmonary complications following different radiotherapy techniques for breast cancer, and the association to irradiated lung volume and dose. Breast Cancer Res. Treat. 2001, 68, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.V.; Purdy, J.A.; Emami, B.; Harms, W.; Bosch, W.; Lockett, M.A.; Perez, C.A. Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 323–329. [Google Scholar] [CrossRef]
- Taylor, C.W.; Wang, Z.; Macaulay, E.; Jagsi, R.; Duane, F.; Darby, S.C. Exposure of the heart in breast cancer radiation therapy: A systematic review of heart doses published during 2003 to 2013. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Jensen, M.B. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehammar, J.C.; Jensen, M.B.; McGale, P.; Lorenzen, E.L.; Taylor, C.; Darby, S.C.; Ewertz, M. Risk of heart disease in relation to radiotherapy and chemotherapy with anthracyclines among 19,464 breast cancer patients in Denmark, 1977–2005. Radiother. Oncol. 2017, 123, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, C.; Correa, C.; Duane, F.K.; Aznar, M.C.; Anderson, S.J.; Bergh, J.; Early Breast Cancer Trialists’ Collaborative Group. Estimating the risks of breast cancer radiotherapy: Evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J. Clin. Oncol. 2017, 35, 1641. [Google Scholar] [CrossRef] [PubMed]
- Yukihara, E.G.; Gasparian, P.B.R.; Sawakuchi, G.O.; Ruan, C.; Ahmad, S.; Kalavagunta, C.; Titt, U. Medical applications of optically stimulated luminescence dosimeters (OSLDs). Radiat. Meas. 2010, 45, 658–662. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y.; Zealey, W. Performance of Al2O3:C optically stimulated luminescence dosimeters for clinical radiation therapy applications. Australas. Phys. Eng. Sci. Med. 2009, 32, 226–232. [Google Scholar] [CrossRef]
- Abdemanafi, M.; Tavakoli, M.B.; Akhavan, A.; Abedi, I. Evaluation of the lung dose in three-dimensional conformal radiation therapy of left-sided breast cancer: A phantom study. J. Med. Signals Sens. 2020, 10, 48–52. [Google Scholar] [PubMed]
- Virén, T.; Heikkilä, J.; Myllyoja, K.; Koskela, K.; Lahtinen, T.; Seppälä, J. Tangential volumetric modulated arc therapy technique for left-sided breast cancer radiotherapy. Radiat. Oncol. 2015, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Haciislamoglu, E.; Colak, F.; Canyilmaz, E.; Dirican, B.; Gurdalli, S.; Yilmaz, A.H.; Bahat, Z. Dosimetric comparison of left-sided whole-breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and volumetric arc therapy. Phys. Med. 2015, 31, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.M.; Cash, E.; Chen, M.H.; Chin, L.; Manning, W.J.; Harris, J.; Bornstein, B. Reduction of cardiac volume in left-breast treatment fields by respiratory maneuvers: A CT study. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 895–904. [Google Scholar] [CrossRef]
- Remouchamps, V.M.; Vicini, F.A.; Sharpe, M.B.; Kestin, L.L.; Martinez, A.A.; Wong, J.W. Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 392–406. [Google Scholar] [CrossRef]
- Osman, S.O.; Hol, S.; Poortmans, P.M.; Essers, M. Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation. Radiother. Oncol. 2014, 112, 17–22. [Google Scholar] [CrossRef]
- Remouchamps, V.M.; Letts, N.; Vicini, F.A.; Sharpe, M.B.; Kestin, L.L.; Chen, P.Y.; Wong, J.W. Initial clinical experience with moderate deep-inspiration breath hold using an active breathing control device in the treatment of patients with left-sided breast cancer using external beam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 704–715. [Google Scholar] [CrossRef]
- Nissen, H.D.; Appelt, A.L. Improved heart, lung and target dose with deep inspiration breath hold in a large clinical series of breast cancer patients. Radiother. Oncol. 2013, 106, 28–32. [Google Scholar] [CrossRef]
3D-CRT | IMRT | VMAT | 3D-CRT vs. IMRT | 3D-CRT vs. VMAT | IMRT vs. VMAT | ||
---|---|---|---|---|---|---|---|
p-Value | |||||||
PTV | |||||||
Dmean (Gy) | 49.16 ± 0.05 | 50.78 ± 0.06 | 51.24 ± 0.10 | 0.0007 * | 0.0008 * | 0.0022 * | |
V47.5Gy (%) | 90.88 ± 0.53 | 90.74 ± 0.17 | 97.87 ± 0.06 | 0.3722 | 0.0009 * | 0.0001 * | |
D2% (Gy) | 52.81 ± 0.09 | 53.76 ± 0.06 | 52.56 ± 0.11 | 0.0003 * | 0.0754 | 0.0032 * | |
D98% (Gy) | 43.70 ± 0.58 | 48.26 ± 0.15 | 49.79 ± 0.12 | 0.0026 * | 0.0021 * | 0.0031 * | |
CI | 0.70 ± 0.01 | 0.81 ± 0.02 | 0.89 ± 0.02 | 0.0120 * | 0.0014 * | 0.0286 * | |
HI | 0.18 ± 0.02 | 0.13 ± 0.01 | 0.10 ± 0.01 | 0.0068 * | 0.0026 * | 0.0099 * | |
Heart | |||||||
Dmean (Gy) | 1.90 ± 0.02 | 3.79 ± 0.04 | 2.25 ± 0.04 | 0.0001 * | 0.0034 * | 0.0001 * | |
V5Gy (%) | 16.16 ± 0.23 | 28.17 ± 0.34 | 26.18 ± 0.17 | 0.0003 * | 0.0001 * | 0.0087 * | |
V15Gy (%) | 4.08 ± 0.06 | 7.09 ± 0.09 | 6.18 ± 0.14 | 0.0001 * | 0.0002 * | 0.0005 * | |
V30Gy (%) | 0.32 ± 0.02 | 0.52 ± 0.01 | 0.40 ± 0.01 | 0.0036 * | 0.0029 * | 0.0046 * |
Organ (Number) | 3D-CRT | IMRT | VMAT | 3D-CRT vs. IMRT | 3D-CRT vs. VMAT | IMRT vs. VMAT | |
---|---|---|---|---|---|---|---|
p-Value | |||||||
Thyroid | |||||||
Left (28) | 0.10 ± 0.01 | 0.11 ± 0.02 | 0.34 ± 0.03 | 0.0918 | 0.0009 * | 0.0004 * | |
Right (29) | 0.18 ± 0.02 | 0.20 ± 0.01 | 0.38 ± 0.01 | 0.0099 * | 0.0006 * | 0.0002 * | |
Heart | |||||||
Atrium (95) | 0.69 ± 0.03 | 0.78 ± 0.04 | 2.88 ± 0.02 | 0.0622 | 0.0000 * | 0.0000 * | |
Ventricle (108) | 0.70 ± 0.01 | 0.94 ± 0.02 | 4.05 ± 0.04 | 0.0004 * | 0.0000 * | 0.0000 * | |
Lung | |||||||
Left upper (97) | 6.14 ± 0.03 | 8.22 ± 0.01 | 8.93 ± 0.02 | 0.0000 * | 0.0000 * | 0.0000 * | |
Right upper (102) | 0.69 ± 0.03 | 1.02 ± 0.02 | 3.95 ± 0.03 | 0.0002 * | 0.0000 * | 0.0000 * | |
Left lower (100) | 0.24 ± 0.03 | 0.52 ± 0.01 | 0.83 ± 0.03 | 0.0005 * | 0.0000 * | 0.0005 * | |
Right lower (106) | 0.13 ± 0.02 | 0.15 ± 0.03 | 0.77 ± 0.03 | 0.2627 | 0.0011 * | 0.0007 * |
Organ (Number) | TPS | OSLD | p-Value | |
---|---|---|---|---|
Thyroid | ||||
Left (28) | 0.10 ± 0.01 | 0.27 ± 0.05 | 0.024 * | |
Right (29) | 0.18 ± 0.02 | 0.20 ± 0.03 | 0.387 | |
Heart | ||||
Atrium (95) | 0.69 ± 0.03 | 0.94 ± 0.21 | 0.103 | |
Ventricle (108) | 0.70 ± 0.01 | 1.09 ± 0.22 | 0.069 | |
Lung | ||||
Left upper (97) | 6.14 ± 0.03 | 6.21 ± 0.19 | 0.207 | |
Right upper (102) | 0.69 ± 0.03 | 0.44 ± 0.09 | 0.086 | |
Left lower (100) | 0.24 ± 0.03 | 0.53 ± 0.13 | 0.114 | |
Right lower (106) | 0.13 ± 0.02 | 0.12 ± 0.02 | 0.965 |
Organ (Number) | TPS | OSLD | p-Value | |
---|---|---|---|---|
Thyroid | ||||
Left (28) | 0.11 ± 0.02 | 0.25 ± 0.04 | 0.035 * | |
Right (29) | 0.20 ± 0.01 | 0.21 ± 0.03 | 0.112 | |
Heart | ||||
Atrium (95) | 0.78 ± 0.04 | 0.90 ± 0.11 | 0.075 | |
Ventricle (108) | 0.94 ± 0.02 | 1.18 ± 0.09 | 0.068 | |
Lung | ||||
Left upper (97) | 8.22 ± 0.01 | 17.30 ± 0.16 | 0.301 | |
Right upper (102) | 1.02 ± 0.02 | 0.99 ± 0.05 | 0.078 | |
Left lower (100) | 0.52 ± 0.01 | 1.37 ± 0.14 | 0.022 * | |
Right lower (106) | 0.15 ± 0.03 | 0.25 ± 0.03 | 0.227 |
Organ (Number) | TPS | OSLD | p-Value | |
---|---|---|---|---|
Thyroid | ||||
Left (28) | 0.34 ± 0.03 | 0.40 ± 0.07 | 0.176 | |
Right (29) | 0.38 ± 0.01 | 0.39 ± 0.02 | 0.749 | |
Heart | ||||
Atrium (95) | 2.88 ± 0.02 | 4.11 ± 0.11 | 0.028 * | |
Ventricle (108) | 4.05 ± 0.04 | 4.31 ± 0.09 | 0.041 * | |
Lung | ||||
Left upper (97) | 8.93 ± 0.02 | 11.10 ± 0.14 | 0.046 * | |
Right upper (102) | 3.95 ± 0.03 | 2.44 ± 0.04 | 0.062 | |
Left lower (100) | 0.83 ± 0.03 | 1.02 ± 0.09 | 0.074 | |
Right lower (106) | 0.77 ± 0.03 | 0.81 ± 0.12 | 0.076 |
Organ (Number) | VMAT | VMAT-Pd 0.125 mm | Difference (%) | |
---|---|---|---|---|
Thyroid | ||||
Left (28) | 0.40 ± 0.07 | 0.29 ± 0.04 | −27.50% | |
Right (29) | 0.39 ± 0.02 | 0.37 ± 0.03 | −5.12% | |
Heart | ||||
Atrium (95) | 4.11 ± 0.11 | 2.05 ± 0.06 | −50.12% | |
Ventricle (108) | 4.31 ± 0.09 | 2.18 ± 0.09 | −49.41% | |
Lung | ||||
Left upper (97) | 11.10 ± 0.14 | 6.08 ± 0.09 | −45.22% | |
Right upper (102) | 2.44 ± 0.04 | 2.36 ± 0.11 | −3.27% | |
Left lower (100) | 1.02 ± 0.09 | 0.98 ± 0.06 | −3.92% | |
Right lower (106) | 0.81 ± 0.12 | 0.80 ± 0.07 | −1.23% |
Organ (Number) | VMAT | VMAT-Pd 0.25 mm | Difference (%) | |
---|---|---|---|---|
Mean Dose (Gy) | ||||
Thyroid | ||||
Left (28) | 0.40 ± 0.07 | 0.28 ± 0.05 | −30.00% | |
Right (29) | 0.39 ± 0.02 | 0.31 ± 0.04 | −20.51% | |
Heart | ||||
Atrium (95) | 4.11 ± 0.11 | 1.75 ± 0.11 | −57.42% | |
Ventricle (108) | 4.31 ± 0.09 | 1.88 ± 0.08 | −56.38% | |
Lung | ||||
Left upper (97) | 11.10 ± 0.14 | 4.68 ± 0.13 | −57.83% | |
Right upper (102) | 2.44 ± 0.04 | 1.92 ± 0.07 | −21.31% | |
Left lower (100) | 1.02 ± 0.09 | 1.01 ± 0.05 | −0.98% | |
Right lower (106) | 0.81 ± 0.12 | 0.78 ± 0.08 | −3.70% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, H.-W.; Lai, L.-H.; Ting, C.-Y. A Dosimetric Analysis of Reduction Cardiac Dose with Lead Shielding in Breast Cancer Radiotherapy. Appl. Sci. 2021, 11, 9686. https://doi.org/10.3390/app11209686
Chiu H-W, Lai L-H, Ting C-Y. A Dosimetric Analysis of Reduction Cardiac Dose with Lead Shielding in Breast Cancer Radiotherapy. Applied Sciences. 2021; 11(20):9686. https://doi.org/10.3390/app11209686
Chicago/Turabian StyleChiu, Hsiao-Wen, Lu-Han Lai, and Chien-Yi Ting. 2021. "A Dosimetric Analysis of Reduction Cardiac Dose with Lead Shielding in Breast Cancer Radiotherapy" Applied Sciences 11, no. 20: 9686. https://doi.org/10.3390/app11209686
APA StyleChiu, H. -W., Lai, L. -H., & Ting, C. -Y. (2021). A Dosimetric Analysis of Reduction Cardiac Dose with Lead Shielding in Breast Cancer Radiotherapy. Applied Sciences, 11(20), 9686. https://doi.org/10.3390/app11209686