Collision Avoidance Controller for Unmanned Surface Vehicle Based on Improved Cuckoo Search Algorithm
Abstract
:1. Introduction
2. Problem Description
2.1. Collision Avoidance of Lanxin USV
2.2. Cuckoo Search Algorithm
3. Collision Avoidance Model
3.1. Circular Collision Avoidance Model
3.2. Ellipse Collision Avoidance Model
3.3. Constraints of Collision Avoidance Process
- (a)
- Overtaking situation: when the course difference between the USV and the obstacle vessel is within [0, 45] and [315, 360], if the velocity of the USV is higher than that of the encountering vessel, then the USV turns left to pass the obstacle vessel.
- (b)
- Head-on situation: if the course difference is within [165, 195], the USV turns right to avoid the obstacle vessel.
- (c)
- Crossing situation: if the course difference is within [45, 165], the obstacle vessel crosses on the starboard side of the USV, then the USV turns right; if the course difference is within [195, 315], the obstacle vessel crosses on the port side of the USV, then the USV turns left.
4. The Dynamic Collision Avoidance Algorithm for the USV
4.1. Cuckoo Search Algorithm
4.2. Improved Cuckoo Search Algorithm
4.2.1. Adaptive Step-Size
4.2.2. Mutation and Crossover Operation
4.2.3. Steps of the Improved Algorithm
- Step 1: The number T of iterations, population number N and discovery probability , scaling factor K and crossover probability are set and the positions of N nests are initialized randomly at the same time;
- Step 2: The population is updated using (18) with the adaptive step strategy, the individuals before and after updating are compared and the better solution is selected for retention;
- Step 3: According to the discovery probability , some nests are eliminated, and the same number of new nests are generated by random walk according to (19);
- Step 5: The position of the optimal solution in the population is selected, and whether the algorithm satisfies the termination condition is detected. If it is satisfied, the optimal solution will be output. If not, it will jump to Step 2.
4.3. Fitness Function Based on Collision Avoidance Model
4.4. Parameter Selection of Improved Algorithm
5. Collision Avoidance Trajectory Tracking Control
5.1. Structure of Collision Avoidance Controller
5.2. USV Model
5.3. Tracking Controller Design
6. Simulation of Dynamic Collision Avoidance Algorithm
6.1. Simulation Verification of Improved CS Algorithm
6.2. Simulation Verification for Collision Avoidance
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Felski, A.; Zwolak, K. The Ocean-Going Autonomous Ship-Challenges and Threats. J. Mar. Sci. Eng. 2020, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.H.; Gu, S.D.; Wen, Y.Q.; Du, Z.; Xiao, C.S.; Huang, L.; Zhu, M. The review unmanned surface vehicle path planning: Based on multi-modality constraint. Ocean. Eng. 2020, 200, 107043. [Google Scholar] [CrossRef]
- Kuwata, Y.; Wolf, M.T.; Zarzhitsky, D.; Huntsberger, T.L. Safe Maritime Autonomous Navigation With COLREGS, Using Velocity Obstacles. IEEE J. Ocean. Eng. 2013, 39, 110–119. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, R.; Liu, D.; Huang, L.; Liu, G.; Deng, T. Local reactive obstacle avoidance approach for high-speed unmanned surface vehicle. Ocean Eng. 2015, 106, 128–140. [Google Scholar] [CrossRef]
- Song, A.L.; Su, B.Y.; Dong, C.Z.; Shen, D.W.; Xiang, E.Z.; Mao, F.P. A two-level dynamic obstacle avoidance algorithm for unmanned surface vehicles. Ocean Eng. 2018, 170, 351–360. [Google Scholar] [CrossRef]
- Xiong, C.K.; Lu, D.; Zeng, Z.; Lian, L.; Yu, C.Y. Path Planning of Multiple Unmanned Marine Vehicles for Adaptive Ocean Sampling Using Elite Group-Based Evolutionary Algorithms. J. Intell. Robot. Syst. 2020, 99, 875–889. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Fan, Y.; Mu, D.; Qiu, B. A Formation Autonomous Navigation System for Unmanned Surface Vehicles With Distributed Control Strategy. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2834–2845. [Google Scholar] [CrossRef]
- Sun, X.J.; Wang, G.F.; Fan, Y.S.; Mu, D.D.; Qiu, B.B. Fast Collision Avoidance Method Based on Velocity Resolution for Unmanned Surface Vehicle. In Proceedings of the 2019 31st Chinese Control and Decision Conference (CCDC 2019), Nanchang, China, 3–5 June 2019; pp. 4822–4827. [Google Scholar]
- Guo, X.H.; Ji, M.J.; Zhao, Z.W.; Wen, D.S.; Zhang, W.D. Global path planning and multi-objective path control for unmanned surface vehicle based on modified particle swarm optimization (PSO) algorithm. Ocean. Eng. 2020, 216, 107693. [Google Scholar] [CrossRef]
- Xia, G.Q.; Han, Z.W.; Zhao, B.; Wang, X.W. Unmanned Surface Vehicle Collision Avoidance Trajectory Planning in an Uncertain Environment. IEEE Access 2020, 8, 207844–207857. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, J. Real-time collision avoidance planning for unmanned surface vessels based on field theory. ISA Trans. 2020, 106, 233–242. [Google Scholar] [CrossRef]
- Xu, X.L.; Pan, W.; Huang, Y.B.; Zhang, W.D. Dynamic Collision Avoidance Algorithm for Unmanned Surface Vehicles via Layered Artificial Potential Field with Collision Cone. J. Navig. 2020, 73, 1306–1325. [Google Scholar] [CrossRef]
- Chen, Y.L.; Bai, G.Q.; Zhan, Y.; Hu, X.Y.; Liu, J. Path Planning and Obstacle Avoiding of the USV Based on Improved ACO-APF Hybrid Algorithm With Adaptive Early-Warning. IEEE Access 2021, 9, 40728–40742. [Google Scholar] [CrossRef]
- Guardeno, R.; Lopez, M.J.; Sanchez, J.; Consegliere, A. AutoTuning Environment for Static Obstacle Avoidance Methods Applied to USVs. J. Mar. Sci. Eng. 2020, 8, 300. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Jin, J.C.; Mao, X.P. Local Collision Avoidance Algorithm for a Unmanned Surface Vehicle Based on Steering Maneuver Considering COLREGs. IEEE Access 2021, 9, 49233–49248. [Google Scholar] [CrossRef]
- Liang, C.L.; Zhang, X.K.; Watanabe, Y.; Deng, Y.J. Autonomous Collision Avoidance of Unmanned Surface Vehicles Based on Improved A Star And Minimum Course Alteration Algorithms. Appl. Ocean. Res. 2021, 113, 102755. [Google Scholar] [CrossRef]
- Sang, H.Q.; You, Y.S.; Sun, X.J.; Zhou, Y.; Liu, F. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations. Ocean. Eng. 2021, 223, 108709. [Google Scholar] [CrossRef]
- Tan, G.G.; Zou, J.; Zhuang, J.Y.; Wan, L.; Sun, H.B.; Sun, Z.Y. Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters. Appl. Ocean. Res. 2020, 95, 102018. [Google Scholar] [CrossRef]
- Polvara, R.; Sharma, S.; Wan, J.; Manning, A.; Sutton, R. Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles. J. Navig. 2018, 71, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.; Kim, N. Collision avoidance for an unmanned surface vehicle using deep reinforcement learning. Ocean. Eng. 2020, 199, 107001. [Google Scholar] [CrossRef]
- Song, L.F.; Chen, H.J.; Xiong, W.H.; Dong, Z.P.; Mao, P.X.; Xiang, Z.Q.; Hu, K. Method of Emergency Collision Avoidance for Unmanned Surface Vehicle (usv) Based on Motion Ability Database. Pol. Marit. Res. 2019, 26, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.Q.; Han, Z.W.; Zhao, B.; Wang, X.W. Local Path Planning for Unmanned Surface Vehicle Collision Avoidance Based on Modified Quantum Particle Swarm Optimization. Complexity 2020, 2020, 3095426. [Google Scholar] [CrossRef]
- Lazarowska, A. Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimisation. J. Navig. 2015, 68, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Lazarowska, A. Swarm Intelligence Approach to Safe Ship Control. Pol. Marit. Res. 2015, 22, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Guo, F.; Yao, H.F.; He, S.S.; Xu, X. Collision Avoidance Planning Method of USV Based on Improved Ant Colony Optimization Algorithm. IEEE Access 2019, 7, 52964–52975. [Google Scholar] [CrossRef]
- Rakhshani, H.; Rahati, A. Snap-drift cuckoo search: A novel cuckoo search optimization algorithm. Appl. Soft Comput. 2017, 52, 771–794. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Hosseininejad, S.; Dadkhah, C. Mobile robot path planning in dynamic environment based on cuckoo optimization algorithm. Int. J. Adv. Robot. Syst. 2019, 16, 172988141983957. [Google Scholar] [CrossRef]
- Mohanty, P.K. An intelligent navigational strategy for mobile robots in uncertain environments using smart cuckoo search algorithm. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 6387–6402. [Google Scholar] [CrossRef]
- Chen, P.; Huang, Y.; Mou, J.; van Gelder, P. Ship collision candidate detection method: A velocity obstacle approach. Ocean. Eng. 2018, 170, 186–198. [Google Scholar] [CrossRef]
- Fan, Y.S.; Mu, D.D.; Zhang, X.K.; Wang, G.F.; Guo, C. Course keeping Control Based on Integrated Nonlinear Feedback for a USV with Pod-like Propulsion. J. Navig. 2018, 71, 878–898. [Google Scholar] [CrossRef]
- Sun, X.J.; Wang, G.F.; Fan, Y.S. Model Identification and Trajectory Tracking Control for Vector Propulsion Unmanned Surface Vehicles. Electronics 2020, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.S.; Deb, S. Cuckoo Search via Levey Flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NABIC 2009), Coimbatore, India, 9–11 December 2009. [Google Scholar]
- Zhang, M.Q.; Wang, H.; Cui, Z.H.; Chen, J.J. Hybrid multi-objective cuckoo search with dynamical local search. Memetic Comput. 2018, 10, 199–208. [Google Scholar] [CrossRef]
- Liu, H.D.; Liu, Q.; Sun, R. Deterministic Vessel Automatic Collision Avoidance Strategy Evaluation Modeling. Intell. Autom. Soft Comput. 2019, 25, 789–804. [Google Scholar] [CrossRef]
- Zhou, K.; Chen, J.H.; Liu, X. Optimal Collision-Avoidance Manoeuvres to Minimise Bunker Consumption under the Two-Ship Crossing Situation. J. Navig. 2018, 71, 151–168. [Google Scholar] [CrossRef]
- Szlapczynski, R.; Szlapczynska, J. An analysis of domain-based ship collision risk parameters. Ocean. Eng. 2016, 126, 47–56. [Google Scholar] [CrossRef]
- Ong, P.; Zainuddin, Z. Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction. Appl. Soft Comput. 2019, 80, 374–386. [Google Scholar] [CrossRef]
- Ljouad, T.; Amine, A.; Rziza, M. A hybrid mobile object tracker based on the modified Cuckoo Search algorithm and the Kalman Filter. Pattern Recognit. 2014, 47, 3597–3613. [Google Scholar] [CrossRef]
- Dong, W.; Guo, Y. Global time-varying stabilization of underactuated surface vessel. IEEE Trans. Autom. Control 2005, 50, 859–864. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Shi, Y. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage, AK, USA, 4–9 May 1998. [Google Scholar]
Function Name | Function Equation | Search Scope | Optimal Value |
---|---|---|---|
Sphere | [−5.12, 5.12] | 0 | |
Ackley | [−32, 32] | 0 | |
Girewank | [−600, 600] | 0 | |
Schaffer | [−10, 10] | 0 |
Function | Algorithm | Optimal Solution | Worst Solution | Average Value |
---|---|---|---|---|
Sphere | PSO | 1.1812 × 10 | 8.6634 × 10 | 2.1987 × 10 |
CS | 1.1803 × 10 | 1.3057 × 10 | 5.0170 × 10 | |
ICS | 1.7019 × 10 | 2.8024 × 10 | 1.1439 × 10 | |
Ackley | PSO | 8.9423 × 10 | 5.4106 × 10 | 2.0311 × 10 |
CS | 2.2135 × 10 | 2.6034 × 10 | 4.1700 × 10 | |
ICS | 8.8818 × 10 | 2.2204 × 10 | 8.7041 × 10 | |
Girewank | PSO | 9.6883 × 10 | 0.0494 | 0.0198 |
CS | 0.0020 | 0.0272 | 0.0115 | |
ICS | 0 | 8.1406 × 10 | 8.6685 × 10 | |
Schaffer | PSO | 2.4826 × 10 | 0.0097 | 0.0058 |
CS | 8.4831 × 10 | 0.0097 | 0.0051 | |
ICS | 5.7732 × 10 | 1.6292 × 10 | 3.2832 × 10 |
Starting Point | Target Point | Direction | Velocity | |
---|---|---|---|---|
USV | (0, 280) | (900, 800) | 90 | 30 |
Obstacle 1 | (590, 120) | 270 | (−17, 0) | |
Obstacle 2 | (500, −80) | 0 | (0, 10) | |
Obstacle 3 | (1100, 520) | 270 | (−12, 0) | |
Obstacle 4 | (760, 1050) | 180 | (0, −10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Sun, X.; Wang, G.; Mu, D. Collision Avoidance Controller for Unmanned Surface Vehicle Based on Improved Cuckoo Search Algorithm. Appl. Sci. 2021, 11, 9741. https://doi.org/10.3390/app11209741
Fan Y, Sun X, Wang G, Mu D. Collision Avoidance Controller for Unmanned Surface Vehicle Based on Improved Cuckoo Search Algorithm. Applied Sciences. 2021; 11(20):9741. https://doi.org/10.3390/app11209741
Chicago/Turabian StyleFan, Yunsheng, Xiaojie Sun, Guofeng Wang, and Dongdong Mu. 2021. "Collision Avoidance Controller for Unmanned Surface Vehicle Based on Improved Cuckoo Search Algorithm" Applied Sciences 11, no. 20: 9741. https://doi.org/10.3390/app11209741
APA StyleFan, Y., Sun, X., Wang, G., & Mu, D. (2021). Collision Avoidance Controller for Unmanned Surface Vehicle Based on Improved Cuckoo Search Algorithm. Applied Sciences, 11(20), 9741. https://doi.org/10.3390/app11209741