Cardiac and Cerebellar Histomorphology and Inositol 1,4,5-Trisphosphate (IP3R) Perturbations in Adult Xenopus laevis Following Atrazine Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Husbandry
2.2. Treatment
2.3. Routine Histological Saining of Cardiac and Cerebellar Sections
2.4. IP3R Immunohistochemistry
2.5. Quantitative Analysis
2.6. Statistical Analysis
3. Results
3.1. Gross Morphology of the Hearts and Weight of the Brains
3.2. Cardiac Myocyte Histomorphology
3.3. Expression of IP3Rs in Cardiac Tissue
3.4. Histology of the Cerebellar Cortex
3.5. Quantification of Granule and Purkinje Cell Density
3.6. Expression of IP3R in the Cerebellar Cortex
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, X.; Sun, C.; Xie, J.; Song, H.; Zhu, Q.; Su, Y.; Qian, H.; Fu, Z. Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum. Environ. Sci. Pollut. Res. 2015, 22, 17499–17507. [Google Scholar] [CrossRef]
- Ribaudo, M.; Bouzaher, A. Atrazine: Environmental Characteristics and Economics of Management. 1994. Available online: http://www.ers.usda.gov/publications/pub-details/?pubid=40594 (accessed on 21 September 2021).
- Barchanska, H.; Sajdak, M.; Szczypka, K.; Swientek, A.; Tworek, M.; Kurek, M. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. Environ. Sci. Pollut. Res. 2016, 24, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, J.M.; Shadung, J.M.; Wepener, V. Prioritizing agricultural pesticides used in South Africa based on their environmental mobility and potential human health effects. Environ. Int. 2014, 62, 31–40. [Google Scholar] [CrossRef]
- Tiryaki, O.; Temur, C. The fate of pesticide in the environment. J. Biol. Env. Sci. 2010, 4, 29–38. [Google Scholar]
- Scahill, J.L. Effects of atrazine on embryonic development of fathead minnows (Pimephales promelas) and Xenopus laevis. BIOS 2008, 79, 139–149. [Google Scholar] [CrossRef]
- Langerveld, A.J.; Celestine, R.; Zaya, R.; Mihalko, D.; Ide, C.F. Chronic exposure to high levels of atrazine alters expression of genes that regulate immune and growth-related functions in developing Xenopus laevis tadpoles. Environ. Res. 2009, 109, 379–389. [Google Scholar] [CrossRef]
- Sifkarovski, J.; Grayfer, L.; Andino, F.D.J.; Lawrence, B.P.; Robert, J. Negative effects of low dose atrazine exposure on the development of effective immunity to FV3 in Xenopus laevis. Dev. Comp. Immunol. 2014, 47, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Hayes, T.B.; Case, P.; Chui, S.; Chung, D.; Haeffele, C.; Haston, K.; Lee, M.; Mai, V.P.; Marjuoa, Y.; Parker, J.; et al. Pesticide Mixtures, Endocrine Disruption, and Amphibian Declines: Are We Underestimating the Impact? Environ. Health Perspect. 2006, 114 (Suppl. 1), 40–50. [Google Scholar] [CrossRef] [PubMed]
- Jooste, A.M.; Du Preez, L.H.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J. Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms. Environ. Sci. Technol. 2005, 39, 5255–5261. [Google Scholar] [CrossRef] [PubMed]
- Rimayi, C.; Odusanya, D.; Weiss, J.; de Boer, J.; Chimuka, L.; Mbajiorgu, F. Effects of environmentally relevant sub-chronic atrazine concentrations on African clawed frog (Xenopus laevis) survival, growth and male gonad development. Aquat. Toxicol. 2018, 199, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kabra, A.N.; Ji, M.-K.; Choi, J.; Kim, J.R.; Govindwar, S.; Jeon, B.-H. Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environ. Sci. Pollut. Res. 2014, 21, 12270–12278. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhao, H.-S.; Qin, L.; Li, X.-N.; Zhang, C.; Xia, J.; Li, J.-L. Atrazine Triggers Mitochondrial Dysfunction and Oxidative Stress in Quail (Coturnix C. coturnix) Cerebrum via Activating Xenobiotic-Sensing Nuclear Receptors and Modulating Cytochrome P450 Systems. J. Agric. Food Chem. 2018, 66, 6402–6413. [Google Scholar] [CrossRef]
- Podda, M.V.; Deriu, F.; Solinas, A.; Demontis, M.P.; Varoni, M.V.; Spissu, A.; Anania, V.; Tolu, E. Effect of atrazine Administration on Spontaneous and Evoked Cerebellar Activity in the RAT. Pharmacol. Res. 1997, 36, 199–202. [Google Scholar] [CrossRef]
- Xia, J.; Qin, L.; Du, Z.-H.; Lin, J.; Li, X.-N.; Li, J.-L. Performance of a novel atrazine-induced cerebellar toxicity in quail (Coturnix C. coturnix): Activating PXR/CAR pathway responses and disrupting cytochrome P450 homeostasis. Chemosphere 2017, 171, 259–264. [Google Scholar] [CrossRef]
- Lin, Z.; Dodd, C.A.; Xiao, S.; Krishna, S.; Ye, X.; Filipov, N.M. Gestational and Lactational Exposure to Atrazine via the Drinking Water Causes Specific Behavioral Deficits and Selectively Alters Monoaminergic Systems in C57BL/6 Mouse Dams, Juvenile and Adult Offspring. Toxicol. Sci. 2014, 141, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Asouzu Johnson, J.; Ihunwo, A.; Chimuka, L.; Mbajiorgu, E.F. Cardiotoxicity in African clawed frog (Xenopus laevis) sub-chronically exposed to environmentally relevant atrazine concentrations: Implications for species survival. Aquat. Toxicol. 2019, 213, 105218. Available online: https://www.sciencedirect.com/science/article/pii/S0166445X18308099 (accessed on 16 September 2021). [CrossRef] [PubMed]
- Amir, S.; Shah, S.; Mamoulakis, C.; Docea, A.; Kalantzi, O.-I.; Zachariou, A.; Calina, D.; Carvalho, F.; Sofikitis, N.; Makrigiannakis, A.; et al. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. Int. J. Environ. Res. Public Health 2021, 18, 1464. [Google Scholar] [CrossRef]
- Spealman, C.R. The action of ions on the frog heart. Am. J. Physiol. Content 1940, 130, 729–738. [Google Scholar] [CrossRef]
- Fijorek, K.; Püsküllüoğlu, M.; Tomaszewska, D.; Tomaszewski, R.; Glinka, A.; Polak, S. Serum potassium, sodium and calcium levels in healthy individuals—literature review and data analysis. Folia Med. Crac. 2014, 54, 53–70. [Google Scholar]
- Philipson, K.D.; Nicoll, D.A. Sodium-Calcium Exchange: A Molecular Perspective. Annu. Rev. Physiol. 2000, 62, 111–133. [Google Scholar] [CrossRef]
- Bers, D.M.; Barry, W.H.; Despa, S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc. Res. 2003, 57, 897–912. [Google Scholar] [CrossRef] [Green Version]
- Eisner, D.A.; Caldwell, J.L.; Kistamas, K.; Trafford, A.W. Calcium and Excitation-Contraction Coupling in the Heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Greenberg, M.E. Calcium signaling in neurons: Molecular mechanisms and cellular consequences. Science 1995, 268, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Dellis, O.; Dedos, S.G.; Tovey, S.C.; Rahman, T.U.; Dubel, S.J.; Taylor, C.W. Ca 2+ Entry Through Plasma Membrane IP 3 Receptors. Science 2006, 313, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Dellis, O.; Rossi, A.M.; Dedos, S.G.; Taylor, C. Counting Functional Inositol 1,4,5-Trisphosphate Receptors into the Plasma Membrane. J. Biol. Chem. 2008, 283, 751–755. [Google Scholar] [CrossRef] [Green Version]
- Koulen, P.; Janowitz, T.; Johnston, L.D.; Ehrlich, B.E. Conservation of localization patterns of IP3 receptor type 1 in cerebellar Purkinje cells across vertebrate species. J. Neurosci. Res. 2000, 61, 493–499. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-4547%2820000901%2961%3A5%3C493%3A%3AAID-JNR3%3E3.0.CO%3B2-9 (accessed on 21 September 2021). [CrossRef]
- Ando, H.; Hirose, M.; Mikoshiba, K. Aberrant IP3 receptor activities revealed by comprehensive analysis of pathological mutations causing spinocerebellar ataxia 29. Proc. Natl. Acad. Sci. USA 2018, 115, 12259–12264. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.I.; Boehning, D. Cardiac inositol 1,4,5-trisphosphate receptors. Biochim. Biophys. Acta (BBA)—Bioenerg. 2017, 1864, 907–914. [Google Scholar] [CrossRef]
- Rohr, J.R.; McCoy, K.A. A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ. Health Perspect. 2010, 118, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farruggia, F.T.; Rossmeisl, C.M.; Hetrick, J.A.; Biscoe, M.; Branch, M.E.R., III. Refined Ecological Risk Assessment for Atrazine; US Environmental Protection Agency, Office of Pesticide Programs: Washington, DC, USA, 2016.
- Mitrut, R.; Stepan, A.; Pirici, D. Histopathological Aspects of the Myocardium in Dilated Cardiomyopathy. Curr. Health Sci. J. 2018, 44, 243–249. [Google Scholar] [CrossRef]
- Marshall, L.; Vivien, C.; Girardot, F.; Péricard, L.; Demeneix, B.A.; Coen, L.; Chai, N. Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus. PLoS ONE 2017, 12, e0173418. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Witter, L.; Rudolph, S.; Elliott, H.L.; Ennis, K.A.; Regehr, W.G. Purkinje Cells Directly Inhibit Granule Cells in Specialized Regions of the Cerebellar Cortex. Neuron 2016, 91, 1330–1341. [Google Scholar] [CrossRef] [Green Version]
- Ralcewicz, T.A.; Persaud, T. Purkinje and granule cells distribution in the cerebellum of the rat following prenatal exposure to low dose ionizing radiation. Exp. Toxicol. Pathol. 1994, 46, 443–452. [Google Scholar] [CrossRef]
- Manzano, A.S.; Herrel, A.; Fabre, A.-C.; Abdala, V. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology. J. Anat. 2017, 231, 38–58. [Google Scholar] [CrossRef]
- Redmond, L.; Ghosh, A. Regulation of dendritic development by calcium signaling. Cell Calcium 2005, 37, 411–416. [Google Scholar] [CrossRef]
- Nanou, E.; Catterall, W.A. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 2018, 98, 466–481. [Google Scholar] [CrossRef] [Green Version]
- Berridge, M.J.; Bootman, M.; Roderick, H. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.L.; Prigioni, I.; Gioglio, L.; Rubbini, G.; Russo, G.; Martini, M.; Farinelli, F.; Rispoli, G.; Fesce, R. IP3 receptor in the hair cells of frog semicircular canal and its possible functional role. Eur. J. Neurosci. 2006, 23, 1775–1783. [Google Scholar] [CrossRef]
- Hisatsune, C.; Mikoshiba, K. IP3receptor mutations and brain diseases in human and rodents. J. Neurochem. 2017, 141, 790–807. [Google Scholar] [CrossRef] [Green Version]
- Fill, M.; Copello, J.A. Ryanodine Receptor Calcium Release Channels. Physiol. Rev. 2002, 82, 893–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tijskens, P.; Meissner, G.; Franzini-Armstrong, C. Location of Ryanodine and Dihydropyridine Receptors in Frog Myocardium. Biophys. J. 2003, 84, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Lipp, P.; Laine, M.; Tovey, S.C.; Burrell, K.M.; Berridge, M.J.; Li, W.; Bootman, M.D. Functional InsP3 receptors that may modulate excitation–contraction coupling in the heart. Curr. Biol. 2000, 10, 939–942. [Google Scholar] [CrossRef] [Green Version]
- Signore, S.; Sorrentino, A.; Ferreira-Martins, J.; Kannappan, R.; Shafaie, M.; Del Ben, F.; Isobe, K.; Arranto, C.; Wybieralska, E.; Webster, A.; et al. Inositol 1,4,5-Trisphosphate Receptors and Human Left Ventricular Myocytes. Circulation 2013, 128, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Go, L.O.; Moschella, M.C.; Watras, J.; Handa, K.K.; Fyfe, B.S.; Marks, A.R. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J. Clin. Investig. 1995, 95, 888–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harzheim, D.; Movassagh, M.; Foo, R.S.-Y.; Ritter, O.; Tashfeen, A.; Conway, S.J.; Bootman, M.D.; Roderick, H.L. Increased InsP3Rs in the junctional sarcoplasmic reticulum augment Ca2+ transients and arrhythmias associated with cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 2009, 106, 11406–11411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asouzu Johnson, J.; Nkomozepi, P.; Opute, P.; Mbajiorgu, E.F. Cardiac and Cerebellar Histomorphology and Inositol 1,4,5-Trisphosphate (IP3R) Perturbations in Adult Xenopus laevis Following Atrazine Exposure. Appl. Sci. 2021, 11, 10006. https://doi.org/10.3390/app112110006
Asouzu Johnson J, Nkomozepi P, Opute P, Mbajiorgu EF. Cardiac and Cerebellar Histomorphology and Inositol 1,4,5-Trisphosphate (IP3R) Perturbations in Adult Xenopus laevis Following Atrazine Exposure. Applied Sciences. 2021; 11(21):10006. https://doi.org/10.3390/app112110006
Chicago/Turabian StyleAsouzu Johnson, Jaclyn, Pilani Nkomozepi, Prosper Opute, and Ejikeme Felix Mbajiorgu. 2021. "Cardiac and Cerebellar Histomorphology and Inositol 1,4,5-Trisphosphate (IP3R) Perturbations in Adult Xenopus laevis Following Atrazine Exposure" Applied Sciences 11, no. 21: 10006. https://doi.org/10.3390/app112110006
APA StyleAsouzu Johnson, J., Nkomozepi, P., Opute, P., & Mbajiorgu, E. F. (2021). Cardiac and Cerebellar Histomorphology and Inositol 1,4,5-Trisphosphate (IP3R) Perturbations in Adult Xenopus laevis Following Atrazine Exposure. Applied Sciences, 11(21), 10006. https://doi.org/10.3390/app112110006