Polarimetric Dehazing Method Based on Image Fusion and Adaptive Adjustment Algorithm
Abstract
:1. Introduction
2. Theoretical Model
2.1. The Physical Model of Atmospheric Scattering
2.2. Polarimetric Imaging Dehazing Method
2.2.1. Airlight and Airlight at Infinity
2.2.2. The Transmittance Map of Atmosphere
2.2.3. The Dehazed Images
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reza, A.M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. J. VLSI Signal Process. Syst. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, R. Image Defogging Algorithm of Single Color Image Based on Wavelet Transform and Histogram Equalization. Appl. Math. Sci. 2013, 7, 3913–3921. [Google Scholar]
- Khmag, A.; Al-Haddad, S.A.R.; Ramli, A.R.; Kalantar, B. Single Image Dehazing Using Second-generation Wavelet Transforms and The Mean Vector L2-norm. Vis. Comput. 2018, 34, 675–688. [Google Scholar] [CrossRef]
- Hu, X.; Gao, X.; Wang, H. A Novel Retinex Algorithm and Its Application to Fog-degraded Image Enhancement. Sens. Transducers 2014, 175, 138–143. [Google Scholar]
- Yang, W.; Wang, R.; Fang, S.; Zhang, X. Variable Filter Retinex Algorithm for Foggy Image Enhancement. J. Comput.-Aided Des. Comput. Graph. 2010, 22, 965–971. [Google Scholar] [CrossRef]
- Seow, M.; Asari, K.; Ratio, V. Rule and Homomorphic Filter for Enhancement of Digital Colour Image. Neurocomputing 2006, 69, 954–958. [Google Scholar] [CrossRef]
- Xiao, L.; Li, C.; Wu, Z.; Wang, T. An Enhancement Method for X-ray Image Via Fuzzy Noise Removal and Homomorphic Filtering. Neurocomputing 2016, 195, 56–64. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C. Single Image Dehazing Using Elliptic Curve Scattering Model. Signal Image Video Process. 2021, 15, 1443–1451. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE. Trans. Pattern Anal. 2011, 33, 2341–2353. [Google Scholar]
- Berman, D.; Treibitz, T.; Avidan, S. Non-Local Image Dehazing. In Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1674–1682. [Google Scholar]
- Haouassi, S.; Wu, D. Image Dehazing Based on (CMTnet) Cascaded Multi-scale Convolutional Neural Networks and Efficient Light Estimation Algorithm. Appl. Sci. 2020, 10, 1190. [Google Scholar] [CrossRef] [Green Version]
- Musunuri, Y.R.; Kwon, O. Haze Removal Based on Refined Transmission Map for Aerial Image Matching. Appl. Sci. 2021, 11, 6917. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Instant Dehazing of Images Using Polarization. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR), Kauai, HI, USA, 8–14 May 2001; pp. 325–332. [Google Scholar]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Polarization-based Vision Through Haze. Appl. Opt. 2003, 42, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Mudge, J.; Virgen, M. Real Time Polarimetric Dehazing. Appl. Opt. 2013, 52, 1932–1938. [Google Scholar] [CrossRef]
- Liang, J.; Ren, L.; Ju, H.; Zhang, W.; Qu, E. Polarimetric Dehazing Method for Dense Haze Removal Based on Distribution Analysis of Angle of Polarization. Opt. Express 2015, 23, 26146–26157. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ju, H.; Ren, L.; Yang, L.; Liang, R. Generalized Polarimetric Dehazing Method Based on low-pass Filtering in Frequency Domain. Sensors 2020, 20, 1729. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhao, L.; Li, X.; Wang, H.; Yang, J.; Li, K.; Liu, T. Polarimetric Image Recovery in Turbid Media Employing Circularly Polarized Light. Opt. Express 2018, 26, 25047–25059. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Qi, P.; Li, X.; Cheng, Z.; Liu, T. Underwater Imaging Enhancement Based on A Polarization Filter and Histogram Attenuation Prior. J. Phys. D Appl. Phys. 2021, 54, 175102–175111. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, Y.; Peng, Q.; Chan, J.C.; Kong, S.G. An Iterative Image Dehazing Method with Polarization. IEEE. Trans. Multimed. 2019, 21, 1093–1107. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, Z.; Zhao, K.; Tian, H. Lane detection in dense fog using a polarimetric dehazing method. Appl. Opt. 2020, 59, 5702–5707. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, J.; Wei, Y.; Liu, F.; Zhang, G. Real-Time Vision through Haze Based on Polarization Imaging. Appl. Sci. 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Liu, P.; Rong, X.; Li, B.; Xu, T. Dehazing and enhancement research of polarized image based on dark channel priori principle. Laser Infrared 2020, 50, 493–500. [Google Scholar]
- Liang, Z.; Ding, X.; Mi, Z.; Wang, Y.; Fu, X. Effective Polarization-Based Image Dehazing With Regularization Constraint. IEEE Geosci. Remote Sens. Lett. 2020, 1, 1–5. [Google Scholar] [CrossRef]
- McCartney, E.J.; Hall, F.F. Optics of The Atmosphere: Scattering by Molecules and Particles. Phys. Today 1977, 30, 76–77. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Liu, Y.; Liu, X. Adaptive Adjustment Algorithm for Non-uniform Illumination Images Based on 2D Gamma Function. JB Inst. Technol. 2016, 36, 191–196. [Google Scholar]
- Zhang, Y.; Luo, L.; Zhao, H.; Qiu, R.; Ying, Y. Image Dehazing Based on Multispectral Polarization Imaging Method in Different Detection Modes. In Proceedings of the 2018 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), Beijing, China, 7–10 May 2018; pp. 615–620. [Google Scholar]
- Ren, W.; Guan, J. Investigation on Principle of Polarization-difference Imaging in Turbid Conditions. Opt. Commun. 2018, 413, 30–38. [Google Scholar] [CrossRef]
Images | Original Images | Schechner’s Method | Our Method | ||||||
---|---|---|---|---|---|---|---|---|---|
(a) | (d) | (g) | (b) | (e) | (h) | (c) | (f) | (i) | |
C | |||||||||
H | |||||||||
G |
Images | Original Images | Schechner’s Method | Our Method | |||
---|---|---|---|---|---|---|
(a) | (d) | (b) | (e) | (c) | (f) | |
C | ||||||
H | ||||||
G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Lei, B.; Cai, Y.; Gao, C.; Wang, F. Polarimetric Dehazing Method Based on Image Fusion and Adaptive Adjustment Algorithm. Appl. Sci. 2021, 11, 10040. https://doi.org/10.3390/app112110040
Lei Y, Lei B, Cai Y, Gao C, Wang F. Polarimetric Dehazing Method Based on Image Fusion and Adaptive Adjustment Algorithm. Applied Sciences. 2021; 11(21):10040. https://doi.org/10.3390/app112110040
Chicago/Turabian StyleLei, Yu, Bing Lei, Yubo Cai, Chao Gao, and Fujie Wang. 2021. "Polarimetric Dehazing Method Based on Image Fusion and Adaptive Adjustment Algorithm" Applied Sciences 11, no. 21: 10040. https://doi.org/10.3390/app112110040
APA StyleLei, Y., Lei, B., Cai, Y., Gao, C., & Wang, F. (2021). Polarimetric Dehazing Method Based on Image Fusion and Adaptive Adjustment Algorithm. Applied Sciences, 11(21), 10040. https://doi.org/10.3390/app112110040