A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy
Abstract
:1. Introduction
2. Experimental Setup
3. Analysis of Contrast Extraction Algorithms
3.1. Contrast Extraction Procedure
3.2. Calibration with the Zero-Contrast Baseline
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Computation Time
Algorithm | PPC | GG | LSF |
---|---|---|---|
Time (seconds) | 0.008 | 0.3 | 32 |
Appendix B. Mask Alignment
References and Notes
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.J.; et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 2010, 4, 641. [Google Scholar] [CrossRef]
- Altarelli, M. The European X-ray free-electron laser facility in Hamburg. Nucl. Instrum. Methods Phys. Res. B 2011, 269, 2845–2849. [Google Scholar] [CrossRef]
- Ishikawa, T.; Aoyagi, H.; Asaka, T.; Asano, Y.; Azumi, N.; Bizen, T.; Ego, H.; Fukami, K.; Fukui, T.; Furukawa, Y.; et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 2012, 6, 540. [Google Scholar] [CrossRef]
- Kang, H.S.; Min, C.K.; Heo, H.; Kim, C.; Yang, H.; Kim, G.; Nam, I.; Baek, S.Y.; Choi, H.J.; Mun, G.; et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 2017, 11, 708. [Google Scholar] [CrossRef]
- Milne, C.J.; Schietinger, T.; Aiba, M.; Alarcon, A.; Alex, J.; Anghel, A.; Arsov, V.; Beard, C.; Beaud, P.; Bettoni, S.; et al. SwissFEL: The Swiss X-ray free electron laser. Appl. Sci. 2017, 7, 720. [Google Scholar] [CrossRef]
- Shenoy, G.; Stöhr, J. LCLS–The First Experiments; Number SLAC-R-611; SLAC National Accelerator Laboratory: Menlo Park, CA, USA, 2003. [Google Scholar]
- Gutt, C.; Stadler, L.M.; Duri, A.; Autenrieth, T.; Leupold, O.; Chushkin, Y.; Grübel, G. Measuring temporal speckle correlations at ultrafast X-ray sources. Opt. Express 2009, 17, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, G.; Urbani, P.; Zamponi, F. Theory of Simple Glasses: Exact Solutions in Infinite Dimensions; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Hruszkewycz, S.; Sutton, M.; Fuoss, P.; Adams, B.; Rosenkranz, S.; Ludwig, K., Jr.; Roseker, W.; Fritz, D.; Cammarata, M.; Zhu, D.; et al. High contrast x-ray speckle from atomic-scale order in liquids and glasses. Phys. Rev. Lett. 2012, 109, 185502. [Google Scholar] [CrossRef]
- Dufresne, E.; Brüning, R.; Sutton, M.; Rodricks, B.; Stephenson, G. A statistical technique for characterizing X-ray position-sensitive detectors. Nucl. Instrum. Methods Phys. Res. A 1995, 364, 380–393. [Google Scholar] [CrossRef]
- Chollet, M.; Alonso-Mori, R.; Cammarata, M.; Damiani, D.; Defever, J.; Delor, J.T.; Feng, Y.; Glownia, J.M.; Langton, J.B.; Nelson, S.; et al. The x-ray pump–probe instrument at the linac coherent light source. J. Synchrotron Radiat. 2015, 22, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Feng, Y.; Stoupin, S.; Terentyev, S.A.; Lemke, H.T.; Fritz, D.M.; Chollet, M.; Glownia, J.; Alonso-Mori, R.; Sikorski, M.; et al. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source. Rev. Sci. Instrum. 2014, 85, 063106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauer, S.; Stephenson, G.; Sutton, M. Perfect crystals in the asymmetric Bragg geometry as optical elements for coherent x-ray beams. J. Synchrotron Radiat. 1995, 2, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Sikorski, M.; Feng, Y.; Song, S.; Zhu, D.; Carini, G.; Herrmann, S.; Nishimura, K.; Hart, P.; Robert, A. Application of an ePix100 detector for coherent scattering using a hard X-ray free-electron laser. J. Synchrotron Rad. 2016, 23, 1171. [Google Scholar] [CrossRef] [PubMed]
- Carini, G.; Alonso-Mori, R.; Blaj, G.; Caragiulo, P.; Chollet, M.; Damiani, D.; Dragone, A.; Feng, Y.; Haller, G.; Hart, P.; et al. ePix100 camera: Use and applications at LCLS. AIP Conf. Proc. 2016, 1741, 040008. [Google Scholar]
- Sutton, M. Evaluation of Coherence Factor for High Q Data. 2019. Available online: http://www.physics.mcgill.ca/~mark/coherence/yorick/highqbeta.pdf (accessed on 19 February 2019).
- Sun, Y.; Montana-Lopez, J.; Fuoss, P.; Sutton, M.; Zhu, D. Accurate contrast determination for X-ray speckle visibility spectroscopy. J. Synchrotron Radiat. 2020, 27, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.H.; (SLAC National Accelerator Laboratory, Menlo Park, CA, USA). Personal communication, 2016.
- Thayer, J.; Damiani, D.; Ford, C.; Dubrovin, M.; Gaponenko, I.; O’Grady, C.P.; Kroeger, W.; Pines, J.; Lane, T.J.; Salnikov, A.; et al. Data systems for the Linac coherent light source. Adv. Struct. Chem. Imaging 2017, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Roberts and Company Publishers: Greenwood Village, CO, USA, 2007. [Google Scholar]
- The effective contrast βe can be calculated as the weighted averaged of the contrasts extracted from the individual intensity group βi with . Here, Ni, denoting the number of frames and the averaged count rate in group i.
- Shinohara, Y.; Osaka, T.; Inoue, I.; Iwashita, T.; Dmowski, W.; Ryu, C.W.; Sarathchandran, Y.; Egami, T. Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics. Nat. Commun. 2020, 11, 1–7. [Google Scholar]
- Cao, Y.; Sheyfer, D.; Jiang, Z.; Maddali, S.; You, H.; Wang, B.X.; Ye, Z.G.; Dufresne, E.M.; Zhou, H.; Stephenson, G.B.; et al. The Effect of Intensity Fluctuations on Sequential X-ray Photon Correlation Spectroscopy at the X-ray Free Electron Laser Facilities. Crystals 2020, 10, 1109. [Google Scholar] [CrossRef]
- The weighted cross-correlation value can be estimated as . Here the superscript f denotes the index of the frame pairs and and are the intensities of the first and second pulse in the frame pair with the index f, which were measured independently using the beamline I0.
- Sun, Y.; Carini, G.; Chollet, M.; Decker, F.J.; Dunne, M.; Fuoss, P.; Hruszkewycz, S.O.; Lane, T.J.; Nakahara, K.; Nelson, S.; et al. Nonuniform Flow Dynamics Probed by Nanosecond X-Ray Speckle Visibility Spectroscopy. Phys. Rev. Lett. 2021, 127, 058001. [Google Scholar] [CrossRef]
- Lumma, D.; Lurio, L.; Mochrie, S.; Sutton, M. Area detector based photon correlation in the regime of short data batches: Data reduction for dynamic x-ray scattering. Rev. Sci. Instrum. 2000, 71, 3274–3289. [Google Scholar] [CrossRef]
- Roseker, W.; Hruszkewycz, S.; Lehmkühler, F.; Walther, M.; Schulte-Schrepping, H.; Lee, S.; Osaka, T.; Strüder, L.; Hartmann, R.; Sikorski, M.; et al. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat. Commun. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Perakis, F.; Camisasca, G.; Lane, T.J.; Späh, A.; Wikfeldt, K.T.; Sellberg, J.A.; Lehmkühler, F.; Pathak, H.; Kim, K.H.; Amann-Winkel, K.; et al. Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
Algorithm | (250 m) | (Unfocused & No Slit)/ |
---|---|---|
PPC | −0.19 (0.02) | −0.19 (0.02) |
GG | −0.156 (0.002) | −0.161 (0.002) |
LSF | 0.143 (0.009) | 0.137 (0.007) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Esposito, V.; Hart, P.A.; Hansson, C.; Li, H.; Nakahara, K.; MacArthur, J.P.; Nelson, S.; Sato, T.; Song, S.; et al. A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy. Appl. Sci. 2021, 11, 10041. https://doi.org/10.3390/app112110041
Sun Y, Esposito V, Hart PA, Hansson C, Li H, Nakahara K, MacArthur JP, Nelson S, Sato T, Song S, et al. A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy. Applied Sciences. 2021; 11(21):10041. https://doi.org/10.3390/app112110041
Chicago/Turabian StyleSun, Yanwen, Vincent Esposito, Philip Adam Hart, Conny Hansson, Haoyuan Li, Kazutaka Nakahara, James Paton MacArthur, Silke Nelson, Takahiro Sato, Sanghoon Song, and et al. 2021. "A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy" Applied Sciences 11, no. 21: 10041. https://doi.org/10.3390/app112110041
APA StyleSun, Y., Esposito, V., Hart, P. A., Hansson, C., Li, H., Nakahara, K., MacArthur, J. P., Nelson, S., Sato, T., Song, S., Sun, P., Fuoss, P., Sutton, M., & Zhu, D. (2021). A Contrast Calibration Protocol for X-ray Speckle Visibility Spectroscopy. Applied Sciences, 11(21), 10041. https://doi.org/10.3390/app112110041