Assembly Sequence Planning Using Artificial Neural Networks for Mechanical Parts Based on Selected Criteria
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. The Scope of Research Studies
- Indication of determinants affecting the assembly time (number of tool changes, the number of changes in assembly direction and its stability);
- Measurement of assembly time on an example mechanical part;
- A set of prepared input and output data has been implemented in the neural network;
- Determination of constant parameters of the neural network model:
- 1.
- 3 input neurons (number of tool changes, number of changes in assembly directions, and stability of the assembly unit) and 1 output neuron (assembly time);
- 2.
- Percentage of teaching (80%), testing (10%), and verification (10%) examples;
- 3.
- Regression model (determination of the quantitative and floating-point numerical values).
- Development of the most effective model of neural network:
- 1.
- Changing network learning algorithms (steepest gradient, scaled conjugate gradient, Broyden–Fletcher–Goldfarb–Shanno, and RBFT radial basis function teaching);
- 2.
- Network topography (multilayer perceptron and network with radial basis functions);
- 3.
- Activation functions (linear, sigmoidal, exponential, hyperbolic, and sine);
- 4.
- Number of hidden neurons (1–12).
- Selection of the most effective network model, taking into account the error of the sum of squared differences generated by the network;
- Introduction of previously untested data to the network, allowing verification of the effectiveness of prediction of assembly time.
3.2. Assessment Criteria for the Assembly Sequence
- Number of tool changes for the respective assembly sequence.This criterion indicates the number of tool changes during assembly operations. Operation constitutes the main structural element of a technological assembly process. In this work, operations should be understood as, for example, activities such as riveting, drilling, fitting, and screwing, which are related to changing tools. Depending on the type of parts to be installed, the required tools can be assigned to them in a simple manner, from the set of tools utilized in the considered assembly process.
- The number of changes in assembly direction for the respective assembly sequence.It is the most frequent optimization criterion in ASP. This criterion is connected with the direction in which the parts are attached during their assembly. There are 6 main assembly directions, along the 3 main axes: ± X, ± Y, and ± Z.
- Number of stable and unstable units for the specific assembly unit.Stability criterion determines the number of stable and unstable units for a particular assembly sequence. We assume that a stable unit is such a unit that remains in an assembled state, regardless of the force applied to it. The applied forces may be the force of gravity or the forces associated with the movement of parts or an assembly unit.
3.3. Neural Network Assumptions
- Linear with output values in the range from −∞ to ∞:
- Logistic (sigmoidal) with output values in the range from 0 to 1:
- Exponential with output values in the range from 0 to ∞:
- Hyperbolic (hyperbolic tangent) with output values in the range from −1 to 1:
- Sine with output values from the range from −1 to 1:
- 1.
- 3 input neurons (number of tool changes, number of changes in assembly directions, and stability of the assembly unit) and 1 output neuron (assembly time);
- 2.
- Percentage of teaching (80%), testing (10%), and verification (10%) examples;
- 3.
- Regression model (determination of the quantitative and floating-point numerical values).
- 1.
- Network learning algorithms (steepest gradient, scaled conjugate gradient, Broyden–Fletcher–Goldfarb–Shanno, and RBFT radial basis function teaching);
- 2.
- Network topography (multilayer perceptron and network with radial basis functions);
- 3.
- Activation functions (linear, sigmoidal, exponential, hyperbolic, and sine);
- 4.
- Number of hidden neurons (1–12).
4. Results and Discussion
4.1. Product Structure and Results
- 1: door welded construction;
- 2: lock;
- 3: cassette lock;
- 4: door reinforcement bar with passenger’s handle;
- 5: lock cover;
- 6: door seal;
- 7: lower glass;
- 8: upper glass.
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kumar, G.A.; Bahubalendruni, M.R.; Prasad, V.V.; Ashok, D.; Sankaranarayanasamy, K. A novel Geometric feasibility method to perform assembly sequence planning through oblique orientations. Eng. Sci. Technol. Int. J. 2021. [Google Scholar] [CrossRef]
- Su, Y.; Mao, H.; Tang, X. Algorithms for solving assembly sequence planning problems. Neural Comput. Appl. 2021, 33, 525–534. [Google Scholar] [CrossRef]
- Butlewski, M.; Suszyński, M.; Czernecka, W.; Pajzert, A.; Radziejewska, M. Ergonomic criteria in the optimization of as-sembly processes, Cristina Feniser. In Proceedings of the 6th RMEE2018—Performance Management or Management Performance—Todesco; Publishing House: Cluj-Napoca, Romania, 2018; pp. 424–431. [Google Scholar]
- Sąsiadek, M. Planning and analysis of mechanical assembly sequences in design engineering—Part I: The Method. Teh. Vjesn. Tech. Gaz. 2015, 22, 337–342. [Google Scholar] [CrossRef]
- Wu, W.; Huang, Z.; Zeng, J.; Fan, K. A decision-making method for assembly sequence planning with dynamic resources. Int. J. Prod. Res. 2021, 1–20. [Google Scholar] [CrossRef]
- Watanabe, K.; Inadaa, S. Search algorithm of the assembly sequence of products by using past learning results. Int. J. Prod. Econ. 2020, 226, 107615. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, Q.; Zhang, J.; Gu, P. Planning for automatic product assembly using reinforcement learning. Comput. Ind. 2021, 130, 103471. [Google Scholar] [CrossRef]
- Chen, W.C.; Tai, P.H.; Deng, W.J.; Hsieh, L.F. A three-stage integrated approach for assembly sequence planning using neural networks. Expert Syst. Appl. 2008, 34, 1777–1786. [Google Scholar] [CrossRef]
- Sinanoğlu, C.; Börklü, H.R. An assembly sequence-planning system for mechanical parts using neural network. Assem. Autom. 2005, 25, 38–52. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Li, L. Research on a kind of assembly sequence planning based on immune algorithm and particle swarm optimization algorithm. Int. J. Adv. Manuf. Technol. 2013, 71, 795–808. [Google Scholar] [CrossRef]
- Biswal, B.B.; Pattanayak, S.K.; Mohapatra, R.N.; Parida, P.K.; Jha, P. Generation of optimized robotic assem-bly sequence using immune. In Proceedings of the ASME, International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; pp. 1–9. [Google Scholar]
- Guo, J.; Sun, Z.; Tang, H.; Yin, L.; Zhang, Z. Improved Cat Swarm Optimization Algorithm for Assembly Sequence Planning. Open Autom. Control. Syst. J. 2015, 7, 792–799. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Qin, K.; Zeng, B.; Gao, L.; Su, J. Assembly sequence planning based on an improved harmony search algorithm. Int. J. Adv. Manuf. Technol. 2016, 84, 2367–2380. [Google Scholar] [CrossRef]
- Wang, D.; Shao, X.; Liu, S. Assembly sequence planning for reflector panels based on genetic algorithm and ant colony opti-mization. Int. J. Adv. Manuf. Technol. 2017, 91, 987–997. [Google Scholar] [CrossRef]
- Xin, L.; Shang, J.; Cao, Y. An efficient method of automatic assembly sequence planningfor aerospace industry based on genetic algorithm. Int. J. Adv. Manuf. Technol. 2017, 90, 1307–1315. [Google Scholar] [CrossRef]
- Zeng, C.; Gu, T.; Zhong, Y.; Cai, G. A Multi-Agent Evolutionary algorIthm for Connector-Based Assembly Sequence Planning. Procedia Eng. 2011, 15, 3689–3693. [Google Scholar] [CrossRef] [Green Version]
- Murali, G.B.; Deepak, B.B.V.L.; Bahubalendruni, M.V.A.R.; Biswal, B.B. Optimal Assembly Sequence Planning To-wards Design for Assembly Using Simulated Annealing Technique. Res. Des. Communities 2017, 1, 397–407. [Google Scholar]
- Tadeusiewicz, R.; Chaki, R.; Chaki, N. Exploring Neural Networks with C#; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Suszyński, M.; Żurek, J. Computer aided assembly sequence generation. Manag. Prod. Eng. Rev. 2015, 6, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Suszyński, M.; Żurek, J.; Legutko, S. Modelling of assembly sequences using hypergraph and directed graph. Teh. Vjesn. Tech. Gaz. 2014, 21, 1229–1233. [Google Scholar]
No. | Start | 1 | 2 | 3 | 4 | 5 | 6 | STOP | RESULTING SEQUENCE |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 12 | 123 | 1234 | 12345 | 123456 | 1234567 | 12345678 | 12345678 |
2 | 1 | 12 | 123 | 1234 | 12345 | 123456 | 1234568 | 12345678 | 12345687 |
3 | 1 | 12 | 123 | 1234 | 12345 | 123457 | 1234567 | 12345678 | 12345768 |
4 | 1 | 12 | 123 | 1234 | 12345 | 123457 | 1234578 | 12345678 | 12345786 |
5 | 1 | 12 | 123 | 1234 | 12345 | 123458 | 1234568 | 12345678 | 12345867 |
6 | 1 | 12 | 123 | 1234 | 12345 | 123458 | 1234578 | 12345678 | 12345876 |
7 | 1 | 12 | 123 | 1234 | 12346 | 123456 | 1234567 | 12345678 | 12346578 |
8 | 1 | 12 | 123 | 1234 | 12346 | 123456 | 1234568 | 12345678 | 12346587 |
9 | 1 | 12 | 123 | 1234 | 12346 | 123467 | 1234567 | 12345678 | 12346758 |
10 | 1 | 12 | 123 | 1234 | 12347 | 123457 | 1234567 | 12345678 | 12347568 |
11 | 1 | 12 | 123 | 1234 | 12347 | 123457 | 1234578 | 12345678 | 12347586 |
12 | 1 | 12 | 123 | 1234 | 12347 | 123467 | 1234567 | 12345678 | 12347658 |
13 | 1 | 12 | 123 | 1236 | 12346 | 123456 | 1234567 | 12345678 | 12364578 |
14 | 1 | 12 | 123 | 1236 | 12346 | 123456 | 1234568 | 12345678 | 12364587 |
15 | 1 | 12 | 123 | 1236 | 12346 | 123467 | 1234567 | 12345678 | 12364758 |
… | … | … | … | … | … | … | … | … | … |
252 | 1 | 17 | 167 | 1467 | 13467 | 123467 | 1234567 | 12345678 | 17643258 |
Network No. | Network Name | Effectiveness (Learning) | Effectiveness (Testing) | Effectiveness (Verification) | SOS Error (Learning) | SOS Error (Testing) | SOS Error (Verification) | The Learning Algorithm | Activation (Hidden Neurons) | Activation (Output Neurons) |
---|---|---|---|---|---|---|---|---|---|---|
1 | RBF 3-7-1 | 0.4146 | 0.7848 | 0.9926 | 0.0229 | 0.0587 | 0.0050 | RBFT | Gaussian | Linear |
2 | RBF 3-9-1 | 0.4381 | 0.7643 | 0.9958 | 0.0241 | 0.0698 | 0.0112 | RBFT | Gaussian | Linear |
3 | RBF 3-8-1 | 0.4050 | 0.9764 | 0.9929 | 0.0231 | 0.0456 | 0.0033 | RBFT | Gaussian | Linear |
4 | RBF 3-2-1 | 0.0794 | 0.9668 | 0.9913 | 0.0274 | 0.0636 | 0.0090 | RBFT | Gaussian | Linear |
5 | RBF 3-7-1 | 0.4516 | 0.9759 | 0.9925 | 0.0220 | 0.0574 | 0.0042 | RBFT | Gaussian | Linear |
6 | RBF 3-2-1 | 0.0794 | 0.9668 | 0.9913 | 0.0274 | 0.0636 | 0.0090 | RBFT | Gaussian | Linear |
7 | RBF 3-2-1 | 0.0794 | 0.9668 | 0.9913 | 0.0274 | 0.0636 | 0.0090 | RBFT | Gaussian | Linear |
8 | RBF 3-2-1 | 0.0794 | 0.9668 | 0.9913 | 0.0274 | 0.0636 | 0.0090 | RBFT | Gaussian | Linear |
9 | RBF 3-8-1 | 0.4522 | 0.9778 | 0.9942 | 0.0220 | 0.0574 | 0.0042 | RBFT | Gaussian | Linear |
10 | RBF 3-6-1 | 0.4207 | 0.8487 | 0.9981 | 0.0227 | 0.0567 | 0.0038 | RBFT | Gaussian | Linear |
Connections RBF 3-8-1 | Weight Values | Connections RBF 3-8-1 | Weight Values | Connections RBF 3-8-1 | Weight Values |
---|---|---|---|---|---|
X1—hidden neuron 1 | 0.400000 | X3—hidden neuron 5 | 1.000000 | Radial range hidden neuron 5 | 0.640312 |
X2—hidden neuron 1 | 0.500000 | X1—hidden neuron 6 | 0.600000 | Radial range hidden neuron 6 | 0.200000 |
X3—hidden neuron 1 | 1.000000 | X2—hidden neuron 6 | 0.500000 | Radial range hidden neuron 7 | 0.200000 |
X1—hidden neuron 2 | 0.00000 | X3—hidden neuron 6 | 1.000000 | Radial range hidden neuron 8 | 0.200000 |
X2—hidden neuron 2 | 0.00000 | X1—hidden neuron 7 | 0.400000 | Hidden neuron 1—y | 0.044928 |
X3—hidden neuron 2 | 1.000000 | X2—hidden neuron 7 | 0.00000 | Hidden neuron 2—y | −0.059589 |
X1—hidden neuron 3 | 0.200000 | X3—hidden neuron 7 | 1.000000 | Hidden neuron 3—y | −0.006650 |
X2—hidden neuron 3 | 0.00000 | X1—hidden neuron 8 | 0.400000 | Hidden neuron 4—y | 0.074476 |
X3—hidden neuron 3 | 1.000000 | X2—hidden neuron 8 | 0.500000 | Hidden neuron 5—y | 0.254939 |
X1—hidden neuron 4 | 0.600000 | X3—hidden neuron 8 | 1.000000 | Hidden neuron 6—y | −0.094136 |
X2—hidden neuron 4 | 0.500000 | Radial range hidden neuron 1 | 0.200000 | Hidden neuron 7—y | 0.006649 |
X3—hidden neuron 4 | 1.000000 | Radial range hidden neuron 2 | 0.200000 | Hidden neuron 8—y | −0.045479 |
X1—hidden neuron 5 | 1.000000 | Radial range hidden neuron 3 | 0.200000 | Data offset—y | 0.541008 |
X2—hidden neuron 5 | 1.000000 | Radial range hidden neuron 4 | 0.200000 |
Case No. | Expected Network Value | Network Output Value |
---|---|---|
1 | 0.645 | 0.628 |
2 | 0.635 | 0.598 |
3 | 0.573 | 0.531 |
4 | 0.595 | 0.610 |
5 | 0.525 | 0.508 |
6 | 0.656 | 0.689 |
7 | 0.629 | 0.661 |
8 | 0.595 | 0.619 |
9 | 0.620 | 0.597 |
10 | 0.532 | 0.559 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suszyński, M.; Peta, K. Assembly Sequence Planning Using Artificial Neural Networks for Mechanical Parts Based on Selected Criteria. Appl. Sci. 2021, 11, 10414. https://doi.org/10.3390/app112110414
Suszyński M, Peta K. Assembly Sequence Planning Using Artificial Neural Networks for Mechanical Parts Based on Selected Criteria. Applied Sciences. 2021; 11(21):10414. https://doi.org/10.3390/app112110414
Chicago/Turabian StyleSuszyński, Marcin, and Katarzyna Peta. 2021. "Assembly Sequence Planning Using Artificial Neural Networks for Mechanical Parts Based on Selected Criteria" Applied Sciences 11, no. 21: 10414. https://doi.org/10.3390/app112110414
APA StyleSuszyński, M., & Peta, K. (2021). Assembly Sequence Planning Using Artificial Neural Networks for Mechanical Parts Based on Selected Criteria. Applied Sciences, 11(21), 10414. https://doi.org/10.3390/app112110414