Towards Enhanced Mobile Broadband Communications: A Tutorial on Enabling Technologies, Design Considerations, and Prospects of 5G and beyond Fixed Wireless Access Networks
Abstract
:1. Introduction
1.1. Review of Related Works
1.1.1. Transport Solutions
1.1.2. Enabling Technologies
1.1.3. Design Considerations
1.2. Contributions
- (i)
- A comprehensive tutorial on various broadband technologies considering their capability in meeting the current and future network requirements is comprehensively studied, focusing mainly on the technological evolution and associated features. In this context, insightful analysis of their achievable rates, reaches, advantages, and limitations are presented.
- (ii)
- Apart from the 5G-based FWA prospect that we consider, an extensive analysis of different FWA design considerations that can facilitate system planning and deployment are presented. Besides, related technical challenges are studied and we proffer viable solutions to address them.
- (iii)
- Furthermore, an in-depth discussion on the 5G FWA field trials by various operators is presented. In this regard, we present different metrics for the FWA system performance evaluation.
- (iv)
- A number of potential transport network solutions that are capable of supporting the 5G FWA deployment scenarios are presented and due attention is paid to their capability, advantages, and disadvantages. Based on this, we present a detailed classification of different transport network solutions considering their suitability for ultra-dense deployment and the number of subscribers that can be supported.
- (v)
- Apart from a comprehensive review of different RAN decomposition schemes that are capable of relaxing the transport network constraints, we expatiate the need for the RAN decomposition scheme. Furthermore, we present the effects of the RAN decomposition scheme on the 5G FWA transport network solutions with the main focus on their implementations and implications. Additionally, based on the 3GPP WG3 5G, we evaluate and simulate the required transmission bandwidth for some split options. To ensure effective RAN virtualization and to meet the MFH requirements, we present a high-level concept of vRANs with PTN for attending adaptively to the dynamic nature of different use cases.
1.3. Article Structure
2. Broadband System
2.1. Fixed-Line Broadband System
2.1.1. Hybrid Fiber Coax Network
DOCSIS Version | Downstream Capacity | Upstream Capacity | Production Date | Features | Reference |
---|---|---|---|---|---|
1.0 | 40 Mbps | 10 Mbps | 1996 | Initial release with high-speed internet access | [114,115,116,117,118,119,120] |
1.1 | 40 Mbps | 10 Mbps | 1999 | Added voice over IP service, streaming, and gaming capabilities | [114,115,116,117,118,119,120] |
2.0 | 40 Mbps | 30 Mbps | 2001 | Improved upstream speed and symmetric service capability | [114,115,116,117,118,119,120] |
3.0 | 1 Gbps | 100 Mbps | 2006 | Offers increased capacity (both downstream and upstream). Also supports IPv6 and channel bonding | [114,115,116,117,118,119,120] |
3.1 | 10 Gbps | 1–2 Gbps | 2013 | Considerable efficiency and capacity advancement, wideband channel, OFDM | [114,115,116,117,118,119,120] |
(3.1) a | 10 Gbps | 10 Gbps | 2017 | Enhanced upload speeds and symmetrical streaming | [111,114,115,117,118,119,120] |
2.1.2. Broadband Powerline
2.1.3. Digital Subscriber Line
DSL Type | Acronym | Downstream Capacity | Upstream Capacity | Range (m) | Standard | Reference |
---|---|---|---|---|---|---|
Asymmetric | ADSL | 1.5–9 Mbps | 16–640 kbps | 5500 | ITU G.992.1, ANSI T1.413, ITU-T G.992.3 (ADSL2) | [133,134,135,136] |
ADSL Version 2 | ADSL2 | Up to ∼10 Mbps | Up to ∼1 Mbps | 5500 | ITU G.992.3 | [135,137] |
ADSL Version 2 Extended bandwidth | ADSL2+ | Up to ∼20 Mbps | Up to ∼2 Mbps | 5500 | ANSI T1.413, ITU G.992.5 | [135,137] |
Splitterless | G.lite | 1.5–6 Mbps | 16–640 kbps | 5500 | ITU G.992.2 | [133,134] |
High-bit-rate | HDSL | 1.544 or 2.048 Mbps | 1.544 or 2.048 Mbps | 4000 | ITU G.991.1, ETSI TS 101 135, ANSI T1.TR.28 | [133,134] |
High-bit-rate 2nd generation | HDSL2 | 1.544 Mbps | 1.544 Mbps | 4000 | ANSI T1.418, ITU-T G.991.2 | [133,134,135] |
ISDN | IDSL | 144 kbps | 144 kbps | 5500 | T1.601 | [133,134] |
Single-pair | SDSL | 1.544 or 2.048 Mbps | 1.544 or 2.048 Mbps | 4000 | Proprietary | [133,134] |
Very-high-bit-rate | VDSL | 13–53 Mbps | 1.5–2.3 Mbps | 330–1500 | ANSI T1.424, ITU-T G.993.1, ETSI TS 101 270 | [133,134,136,137] |
Very-high-bit-rate Version 2 | VDSL2 | 13–53 Mbps | 1.5–2.3 Mbps | 330–1500 | ITU-T G.993.2 | [137] |
Very-high-bit-rate Version 2 Vectoring | VDSL2 Vectoring | 100 Mbps | 40 Mbps | 500 | ITU-T G.993.5 | [138,139] |
Very-high-bit-rate Version 2 Bonding | VDSL2 Bonding | 200 Mbps | 50 Mbps | 400 | ITU G.998.1/2/3 (G.bond) | [138] |
2.1.4. Fiber Technologies
2.2. Wireless Broadband System
2.2.1. Microwave Links
2.2.2. Multichannel Multipoint Distribution Service
2.2.3. Local Multipoint Distribution Service
2.2.4. Free Space Optics
2.2.5. Terrestrial Wireless Broadband
Wireless Fidelity
Worldwide Interoperability for Microwave Access (WiMAX)
Direct Broadcast Satellite (DBS)
TV White Space: Broadcast to Enhanced Mobile Broadband
2.3. Mobile Network Evolution
- (i)
- 1G Mobile Systems: As previously mentioned, 1G is an analog radio transmission system. The 1G major technologies are Nordic Mobile Telephony (NMT), Advanced Mobile Phone System (AMPS), and Total Access Communication System (TACS). Note that the 1G-based mobile communication systems are limited. This is due to the fact that voice services are only supported by the system [20,21].
- (ii)
- 2G Mobile Systems: The first analog mobile communication systems present certain challenges regarding quality and capacity. To address these challenges, the 2G digital mobile system has been developed. The standard digital 2G GSM-based mobile systems support voice, as well as limited (low) data services. Note that the GSM is a circuit-switched network in which Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) are employed to support multiple user access at transfer rates of ~14.4 kbps [16]. As faster rates are not supported by the related modulation technique and the GSM channel structure, the High-Speed Circuit-Switched Data (HSCSD) service is presented in the GSM Phase 2+. Furthermore, in order to permit several CA for higher speed, packet-switched functionality is added to the GSM via General Packet Radio Service (GPRS) development. Additionally, further improvement on the GSM technology with advanced modulation schemes results in the Enhanced Data rates for Global Evolution (EDGE). This helps in enhancing the data rate by about threefold in the same bandwidth. Moreover, the combination of EDGE and GPRS results in a potential system comparable with the International Telecommunication Unions IMT-2000 perception [201,209].
- (iii)
- 3G Mobile Systems: The 3G network development presents the right phase for high-quality mobile broadband (MBB) service delivery. Consequently, mobile operators have upgraded their networks to 3G technology to offer several broadband applications with fast wireless internet access to various subscribers. For instance, operators with GSM have evolved their networks to 3G through high-speed packet access (HSPA) and UMTS deployment. Moreover, the traditional operators with CDMA solutions have deployed 1x EVolution data optimized (1x EV-DO) for the system upgrade to the 3G network. However, the presented 3G solutions are only capable of delivering data throughput between a few hundred kbps to a few Mbps [159]. HSPA and 1x EV-DO are discussed in the following enumeration.
- (a)
- HSPA: To start with, High-Speed Downlink Packet Access (HSDPA) is defined in the Third-Generation Partnership Project (3GPP) UMTS Release 5 specifications as a DL-only air interface. It can effectively support a peak user data rate of about 14.4 Mbps with a 5 MHz channel, depending on the number of the employed codes. For instance, when 5 codes are used, HSDPA can offer peak data rates of about 3.6 Mbps; however, with 10 codes, it can give peak rates of about 7.2 Mbps. Furthermore, typical average rates by the subscribers are between 250 kbps to 750 kbps. Note that the basic HSDPA system performance can be considerably improved by employing schemes like spatial processing, multiuser detection, and diversity reception. In addition, the High-Speed Uplink Packet Access (HSUPA) is a UL version of HSDPA standardized in the 3GPP Release 6 (feature for WCDMA) specifications. It is not only based on the support for about 5.76 Mbps UL data rates, but also on capacity and throughput increase [210]. Besides, HSUPA aims at reducing the associated latency [211]. The combination of HSDPA and HSUPA technologies is known as HSPA. Therefore, it aids in packet data transfer optimization in the DL and UL. Note that HSPA also helps in enhancing UMTS network capacity for data transmission and offers considerable latency reductions [159,210,211,212]. Furthermore, in the 3GPP Release 7, 8, 9, and 10, additional enhancements to the HSPA have been specified in the context of HSPA evolution (HSPA+). The main goal is to improve the HSPA-based radio network performance regarding the peak data rate, spectrum efficiency, and latency [213]. This is to deliver a system with performance that is comparable to that of LTE in a 5 MHz carrier and as well as backward compatible with earlier releases [214].
- (b)
- 1x EV-DO: The 3GPP2 standards organization-defined 1x EV-DO as a high-speed data standard, which is an evolution to second-generation IS-95 CDMA systems. A peak DL data rate of 2.4 Mbps can be supported in a 1.25 MHz channel. Typically, the subscribers can experience average download throughputs between 400–600 kbps. Similarly, average upload throughputs of about 500 to 800 kbps, with low latency can be achieved. In the 1x EV-DO Revision A and B versions, a peak rate of 3.1 Mbps and 4.9 Mbps, respectively, can be offered to the mobile user. Furthermore, both versions can offer UL data rates of about 1.8 Mbps. In addition, it should be noted that, Rev. B has optional support for higher channel bandwidth operations [159,215,216]. For instance, about 73 Mbps and 27 Mbps in the DL and UL, respectively, can be achieved when operated at 20 MHz [159]. Typically, in a 3 carrier deployment, Rev. B can deliver a peak rate of 14.4 Mbps. Furthermore, there has been a notable evolution in the 3G systems to support multimedia services [215]. A good instance is the 1x EV-DO Rev A that supports video and voice telephony over IP [159]. An additional step in this technology is based on the development of 1x EV-DO Rev. C that is also known as Ultra MBB (UMB). It includes support for OFDM-based multi-antenna schemes, spatial multiplexing, and channel bandwidth up to 20 MHz. However, the UMB is not backward compatible with the earlier CDMA2000 standards [20,21,22,217]. Besides, although the 3G mobile system can support up to 2 Mbps broadband data transmission, the associated capacity is inadequate to make the 3G system a key broadband technology market competitor. Consequently, mobile 3G has been offering complementary broadband services [16].
- (iv)
- 4G Mobile Systems: The 4G mobile communication is well-signified by the LTE technology. Compared with HSPA, LTE not only offers higher efficiency, but also further improves the mobile-broadband experience regarding the achievable end-user data throughputs. The offered improvement is a result of the implemented advanced schemes such as OFDM and multi-antenna technologies that present wider transmission bandwidths. In addition, 3G supports mobile communication in the unpaired spectrum, whereas LTE offers both time-division duplex and FDD operations. Therefore, within a common radio-access technology, LTE accommodates operation in both unpaired and paired spectra [21].
- (v)
- 5G Mobile Systems: The 5G network is the mobile telecommunication system that was officially launched in 2020. Basically, it is envisaged to transform mobile networks and considerably improve the existing 4G/LTE network performance. Furthermore, it is expected to support many advanced radio technologies such as network slicing, to facilitate quick deployment of different services; Information-Centric Networking (ICN), for the reduction in network traffic; Software-Defined Networks (SDN), to ensure sufficient network flexibility; and Massive MIMO and millimeter-wave for enhancing the system capacity [218,219]. Moreover, it is envisaged to deliver enhanced transmission rates with a minimum rate of 1 Gbps so as to offer an outstanding mobile experience through an eMBB. Similarly, it should offer end-to-end latency of about 1 ms or less to support ultra-reliable and low-latency (URLLC) applications. Apart from the performance improvement regarding substantial high data rates and low latency, massive connection density based on massive machine-type communications (mMTC), as well as other improvements, are anticipated. In this context, use cases such as mMTC, eMBB, and URLLC have been defined by the International Telecommunication Union (ITU) for the 5G networks [218]. Furthermore, the 5G system is a converged network in which wired and wireless systems are to exploit the same infrastructure [220]. In general, 5G is an integrated network that will cooperatively operate for efficient and seamless communication, resulting in a fiber-like user experience [19,48,208].Note that as the 5G network deployment is in its early stage, different teething problems are envisaged. Besides, like its predecessor networks, 5G might not be able to stand the test of time in offering future system requirements regarding full connectivity. Therefore, research attention should be focusing on beyond 5G wireless communications [218].
- (vi)
- Network 2030 and Beyond: The low-frequency spectrum band is capable of long-distance propagation and consequently can support wide coverage. However, owing to its relatively narrow bandwidth, the achievable transmission rate is significantly low. Furthermore, due to the growing increase in traffic and the associated network requirements, the mm-wave band is recommended for the 5G. This band can offer bandwidths in the order of some gigahertz. However, with the current trend in the traffic increase, the mm-wave band may not be an efficient solution that can effectively meet the bandwidth requirements of the Network 2030 (6G and Beyond). In the light of this, the International Telecommunication Union (ITU) has established another ITU Focus Group for Network 2030. The Group aims to guide the global information and communications technology (ICT) community in the analysis of the network capability for the year 2030 and beyond. In this context, some extensive researches are ongoing regarding 6G [218,221].Moreover, 6G is envisioned to be based on major innovative technologies such as super Internet-of-Things (IoT), mobile ultra-broadband, and AI. Besides, it is envisaged that terahertz (THz) communications should be a viable solution for supporting mobile ultra-broadband. Furthermore, super IoT can be achieved with symbiotic radio and satellite-assisted communications. Besides, machine learning methods are expected to be promising solutions for AI networks [218,221,222]. As summarized in Table 7, 6G is envisaged to offer a considerable improvement on the 5G by employing AI to automate and optimize its operation.In addition, concerning the data rate enhancement and bandwidth improvement, the THz band can ideally deliver three orders of magnitude greater than the realizable ones by mm-wave band [221]. At large, one of the main goals of the 6G networks is to achieve ubiquitous connectivity. In this context, satellite and underwater communications networks will be integrated to offer global coverage. Moreover, innovative service classes/use cases such as ubiquitous mobile ultra-broadband (uMUB), ultrahigh-speed-with-low-latency communications (uHSLLC), and ultra-high data density (uHDD) will be defined for the 6G networks [219]. Based on this, a study group has been dedicated in the IEEE 802.15 for THz spectral allocations and standardizations. Likewise, some companies like Huawei and Intel have been carrying out different experiments in these bands [218,221]. Consequently, to give an overview of the main broadband technologies and help in their selection, we consider different salient factors such as coverage, capacity, benefits, and limitations in Table 8.
3. Fixed Wireless Access
3.1. 5G-Based FWA Prospect
3.2. 5G-based FWA Planning and Deployment
3.3. 5G-Based FWA Transport Requirements
- Terminal antenna placement
- Density and height of the obstacle (foliage density, trees, and buildings)
- BS antenna height and placement.
3.4. Lessons Learned
4. FWA Design Considerations, Challenges, and Solutions
4.1. Envisaged 5G Deployment Spectrum
4.1.1. High Path Loss
4.1.2. Penetration Loss Owing to Structures (Low-Emissivity Glass)
4.1.3. Non-Ideal LoS Conditions
4.1.4. Penetration Loss due to Vegetation (Tree Foliage Density)
4.2. Beamforming Approach
4.2.1. Digital Baseband Beamforming
- Effective and power-saving next-generation digital-to-analog converter (DAC) and ADC;
- An increase in small-signal integration level;
- Developments in mm-wave complementary metal-oxide semiconductor transceivers.
4.2.2. Hybrid Approach
4.3. PA Technology Selection
4.4. RF Technology Selection
4.5. High Radio Power Radiation Hazards
4.6. Regulatory Policy
4.7. Robust Ecosystem
4.8. Lessons Learned
5. 5G FWA Field Trials
5.1. 5G FWA Field Trial Overview
5.2. 5G FWA Trial Case Study
5.3. 5G FWA Trial Results
5.4. Performance Evaluation of FWA System
- (i)
- Service area (geographical contour).
- (ii)
- Number of towers and tower locations.
- (iii)
- Number of cells/sectors per tower.
- (iv)
- Number of targeted households per cell, or within the service area.
- (v)
- Wireless technology type and release.
- (vi)
- Carrier frequency and bandwidth.
- (vii)
- Number of base station antennas per cell.
- (viii)
- Number of subscriber antennas per household.
- (ix)
- Base station/subscriber site antenna gains.
- (x)
- Transmission power per cell.
5.4.1. FWA Capacity Requirement
5.4.2. FWA Speed Requirement
5.4.3. Guaranteed Household Percentage
5.4.4. Data Mining and Analytics
5.4.5. Network Quality Evaluation
5.5. Lessons Learned
5.5.1. Cost-Effective Solution
5.5.2. Enhanced Performance
5.5.3. Enabler of Economic Growth
5.5.4. Attractive Broadband Business Solution
6. FWA Transport Network Solutions
6.1. Wireless Solution
6.2. Wired Solution
6.2.1. Dedicated Fiber Solution
6.2.2. Ethernet Solution
6.2.3. WDM-Based Solution
Passive WDM
WDM/OTN
6.3. Lessons Learned
7. Passive Optical Network
7.1. TDM-PON Application
7.1.1. EPON Application
7.1.2. GPON Application
7.2. WDM-PON Application
7.3. TWDM-PON Application
7.4. XGS-PON Application
7.5. Lessons Learned
8. RAN Decomposition Scheme
8.1. Fronthaul Interface
8.2. RAN Functional Split
8.2.1. Option 8 Split
8.2.2. Low Layer Split
Option 7
Option 6
8.2.3. High Layer Split
8.3. Performance Requirements
8.3.1. Bandwidth Requirements
8.3.2. Latency Requirements
8.4. Virtualized RAN
8.5. FWA System and Functional Split Implications
8.5.1. High Bit-rate PtP-fiber and PtP-WDM
8.5.2. High Bit-Rate TWDM-PON
8.5.3. OFDM-PON
8.5.4. UDWDM-PON
8.6. Lessons Learned
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
1G | First-Generation |
1x EV-DO | 1x Evolution Data Optimized |
2G | Second-Generation |
3D | Three-Dimensional |
3G | Third-Generation |
3GPP | Third-Generation Partnership Project |
4D | Four-Dimensional |
4G | Fourth-Generation |
5G | Fifth-Generation |
AAS | Active Antenna Systems |
AAU | Active Antenna Unit |
ABF | Analog BF |
ADC | Analog-to-Digital Converter |
ADSL | Asymmetric DSL |
AI | Artificial Intelligence |
AMPS | Advanced Mobile Phone System |
ANSI | American National Standards Institute |
AP | Access Point |
APON | ATM PON |
AT&T | American Telephone and Telegraph |
ATM | Asynchronous Transfer Mode |
B5G | Beyond-5G |
BB | Broadband |
BBU | Baseband Unit |
BF | Beamforming |
BFWA | Broadband FWA |
BPL | Broadband-over Power Lines |
BPON | Broadband PON |
BS | Base Station |
BT | Beam Tracing |
C&M | Control and Management |
CA | Carrier Aggregation |
CableLabs | Cable Television Laboratories |
CATV | Community Antenna TV |
CBR | Constant Bit Rate |
CBRS | Citizens Broadband Radio Service |
CO | Central Office |
COTS | Commercial off-the-Shelf |
CP | Cyclic Prefix |
CPE | Customer Premises Equipment |
CPRI | Common Public Radio Interface |
C-RAN | Cloud RAN |
CSPR | CW-to-signal power ratio |
CU | Central Unit |
CW | Continuous-Wave |
CWDM | Coarse WDM |
DAC | Digital-to-Analog Converter |
D-AMPS | Digital AMPS |
DBA | Dynamic Bandwidth Allocation |
DBF | Digital BF |
DBS | Direct Broadcast Satellite |
DD | Direct Detection |
DEMUX | De-multiplexing |
DL | Downlink |
DOCSIS | Data Over Cable Service Interface Specification |
DRAN | Distributed RAN |
DEMUX | De-multiplexing |
DL | Downlink |
DOCSIS | Data Over Cable Service Interface Specification |
DRAN | Distributed RAN |
D-RoF | Digital Radio-over Fiber |
DS | Downstream |
DSL | Digital Subscriber Line |
DSLAM | DSL Access Module |
DSM | Dynamic SM |
DSP | Digital Signal Processing |
DSSS | Direct-Sequence Spread Spectrum |
DU | Distributed Unit |
DWBA | Dynamic Wavelength and Bandwidth Allocation |
DWDM | Dense WDM |
e2e | end-to-end |
eCPRI | Enhanced CPRI |
EDB | Electrical Duobinary |
EDFA | Erbium-Doped Fiber Amplifier |
EDGE | Enhanced Data rates for Global Evolution |
EIRP | Effective Isotropic Radiated Power |
eMBB | Enhanced Mobile Broadband |
EMI | Electromagnetic Interference |
EPON | Ethernet PON |
ETACS | European TACS |
ETSI | European Telecommunications Standards Institute |
EV-DO | Evolution-Data Optimized |
FCC | Federal Communications Commission |
FDD | Frequency Division Duplexing |
FDMA | Frequency Division Multiple Access |
FDP | Fiber Distribution Point |
FEC | Forward Error Correction |
FEXT | Far-End-Crosstalk |
FHSS | Frequency Hopping Spread Spectrum |
FPGA | Field-Programmable Gate Array |
FSAN | Full Service Access Network |
FSO | Free Space Optics |
FSOn | Functional Split Option |
FSPF | Frequency-Selective Power-Fading |
FTTB | Fiber-to-the-Building |
FTTC | Fiber-to-the-Cabinet |
FTTH | Fiber-to-the-Home |
FTTN | Fiber-to-the-node |
FTTP | Fiber-to-the-premise |
FTTx | Fiber-to-the-x |
FWA | Fixed Wireless Access |
FWT | Fixed Wireless Terminal |
GaN | Gallium-Nitride |
GEM | GPON Encapsulation Method |
GPON | Gigabit PON |
GPRS | General Packet Radio Service |
GSM | Global System for Mobile Communications |
HBF | Hybrid BF |
HDTV | High-Definition Television |
HetNet | Heterogeneous Network |
HFC | Hybrid Fiber-Coax |
HLS | High Layer Split |
HSCSD | High-Speed Circuit-Switched Data |
HSDPA | High-Speed Downlink Packet Access |
HSPA | High-Speed Packet Access |
HSPA+ | HSPA evolution |
HSUPA | High-Speed Uplink Packet Access |
I/Q | In-Phase and Quadrature Components |
IEEE | Institute of Electrical and Electronics Engineers |
IoT | Internet of Things |
IP | Internet Protocol |
IPTV | Internet Protocol TV |
IPv6 | IP version 6 |
ISD | Inter-Site Distance |
ITU | International Telecommunication Union |
ITU-T | ITU Telecommunication Standardization Sector |
JTACS | Japanese TACS |
L1 | Layer 1—physical layer |
L2 | Layer 2—data link layer |
L3 | Layer 3—network layer |
LAN | Local Area Network |
LEO | Low Earth Orbit |
LLS | Low Layer Split |
LMDS | Local Multipoint Delivery Service |
LoS | Line-of-Sight |
Low-e | Low-emissivity |
LTE | Long-Term Evolution |
LTE-A | LTE-Advanced |
M2M | Machine-to-Machine |
MAC | Media Access Control |
MBB | Mobile Broadband |
MBH | Mobile Backhaul |
MCNS | Multimedia Cable Network System Partners Limited |
MFH | Mobile Fronthaul |
MIMO | Multiple-Input Multiple-Output |
mIoT | massive IoT |
MMDS | Multichannel Multipoint Distribution Service |
mMTC | massive Machine-Type Communications |
mm-wave | Millimeter Wave |
MNO | Mobile Network Operator |
MU | Multi-User |
MU-MIMO | multi-user MIMO |
MUX | Multiplexing |
MVNO | Mobile Virtual Network Operator |
NB | Narrowband |
Netsli | Network Slicing |
Netz-C | C450-20 Network |
NEXT | Near-End-Crosstalk |
NFV | Network Functions Virtualization |
NGFI | Next-Generation Fronthaul Interface |
NG-PON2 | Next-Generation PON2 |
nLoS | near LoS |
NLOS | non-LoS |
NMT | Nordic Mobile Telephony |
NR | New Radio |
NRZ | Non-Return-to-Zero |
OAM | Operations, Administration and Maintenance |
OAN | Optical Access Network |
OBSAI | Open Base Station Architecture Initiative |
OCDM-PON | Optical Code Division Multiplexed PON |
ODB | Optical Duobinary |
ODN | Optical Distribution Network |
OFDM | Orthogonal Frequency-Division Multiplexing |
OFDMA | Orthogonal Frequency Division Multiple Access |
OLT | Optical Line Terminal |
ONU | Optical Network Unit |
Opex | Operational Expenditure |
ORI | Open Radio Interface |
OTN | Optical Transport Network |
PA | Power Amplifier |
PAM-4 | 4-Level Pulse Amplitude Modulation |
PAN | Personal Area Network |
PBS | Polarization Beam Splitter |
PDA | Personal Digital Assistant |
PDC | Personal Digital Cellular |
PDCP | Packet Data Convergence Protocol |
PHY | Physical |
PLC | Power Line Communication |
PON | Passive Optical Network |
POTS | Plain Old Telephone Service |
PS | Protocol Stack |
PSTN | Public Switches Telephone Network |
PtMP | Point-to-Multipoint |
PTN | Programmable Transport Network |
PTNI | PTN Interface |
PtP | Point-to-Point |
QoE | Quality of Experience |
QoS | Quality of Service |
RAN | Radio Access Network |
RAT | Radio Access Technology |
RE | Radio Equipment |
REC | Radio Equipment Controller |
RF | Radio Frequency |
RLC | Radio Link Control |
RoFSO | Radio-over FSO |
RRH | Remote Radio Head |
RT | Ray Tracing |
RTMI | Radio Telefono Mobile Integrato |
Rx | Receiver |
SC | Single Carrier |
SC-QAM | Single-Carrier QAM |
SDN | Software-Defined Networking |
SDSL | Symmetric DSL |
SE | Spectral Efficiency |
SiGe | Silicon Germanium |
SISO | Single-Input Single-Output |
SM | Spectrum Management |
SMS | Short Message Service |
SS | Spatial Streams |
SSM | Static SM |
SSMF | Standard Single-Mode Fiber |
TACS | Total Access Communication System |
TDD | Time Division Duplex |
TDM | Time Division Multiplexing |
TDMA | Time Division Multiple Access |
TRx | Transceiver |
TSN | Time-Sensitive Networking |
Tx | Transmitter |
UDWDM-PON | Ultra-Dense WDM-PON |
UHD | Ultra-High-Definition |
UHF | Ultra-High-Frequency |
UL | Uplink |
UMB | Ultra MBB |
UMTS | Universal Mobile Telecommunications System |
URLLC | Ultra-Reliable and Low Latency Communications |
vBBU | Virtual Baseband Unit |
VDSL | Very-high-bit-rate DSL |
vDU | virtualized DU |
VM | Virtual Machine |
VoD | Video-on-Demand |
VoIP | Voice-over-Internet Protocol |
vRANs | Virtualized RANs |
WAN | Wide Area Network |
WDM | Wavelength-Division Multiplexing |
Wi-Fi | Wireless Fidelity |
WiMAX | Worldwide Interoperability for Microwave Access |
WIPAS | Wireless IP Access System |
WLAN | Wireless LAN |
WR-WDM-PON | Wavelength Routed WDM-PON |
WS-WDM-PON | Wavelength Selective WDM-PON |
WT | Wireless Terminal |
XGS-PON | 10-gigabit symmetric PON |
References
- Ayyash, M.; Elgala, H.; Khreishah, A.; Jungnickel, V.; Little, T.; Shao, S.; Rahaim, M.; Schulz, D.; Hilt, J.; Freund, R. Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges. IEEE Commun. Mag. 2016, 54, 64–71. [Google Scholar] [CrossRef]
- Alimi, I.A.; Monteiro, P.P.; Teixeira, A.L. Analysis of multiuser mixed RF/FSO relay networks for performance improvements in Cloud Computing-Based Radio Access Networks (CC-RANs). Opt. Commun. 2017, 402, 653–661. [Google Scholar] [CrossRef]
- Alimi, I.A.; Monteiro, P.P.; Teixeira, A.L. Outage Probability of Multiuser Mixed RF/FSO Relay Schemes for Heterogeneous Cloud Radio Access Networks (H-CRANs). Wirel. Pers. Commun. 2017, 95, 27–41. [Google Scholar] [CrossRef]
- Whitehelm Capital. Thought Leadership: Infrastructure Investing in a Disrupted World, Part 4: Telecoms and Networks; Whitehelm Capital: London, UK, 2018; Available online: https://www.whitehelmcapital.com/wp-content/uploads/2019/04/201809-Thought-Leadership-Infrastructure-Investing-in-a-Disrupted-World-Part-4-Telecoms-Disclaimer.pdf (accessed on 19 May 2021).
- Kim, D.; Zarri, M. Fixed Wireless Access: Economic Potential and Best Practices; Technical Report; GSMA: London, UK, 2018; Available online: https://www.gsma.com/futurenetworks/wp-content/uploads/2018/08/Fixed-Wireless-Access-economic-potential-and-best-practices.pdf (accessed on 15 April 2021).
- Schoolar, D. 5G Fixed Wireless Access: Providing Fiber Speeds over the Air While also Helping Pave the Way for Full 5G Mobility; White Paper; Ovum & Samsung: London, UK, 2016; Available online: https://image-us.samsung.com/SamsungUS/samsungbusiness/products/networking/08152017/Whitepaper_5G-Fixed-Wireless-Access-0.pdf (accessed on 21 June 2021).
- Leung, C.; Huberman, S.; Ho-Van, K.; Le-Ngoc, T. Vectored DSL: Potential, Implementation Issues and Challenges. IEEE Commun. Surv. Tutor. 2013, 15, 1907–1923. [Google Scholar] [CrossRef]
- Skubic, B.; Fiorani, M.; Tombaz, S.; Furuskär, A.; Mårtensson, J.; Monti, P. Optical transport solutions for 5G fixed wireless access [Invited]. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, D10–D18. [Google Scholar] [CrossRef]
- CommScope. CommScope Definitions: What Is Fixed Wireless Access? Technical Report; CommScope: Hickory, NC, USA, 2017. [Google Scholar]
- Brown, G. Exploring 5G New Radio: Use Cases Capabilities & Timeline; White Paper; Qualcomm/Heavy Reading: San Diego, CA, USA, 2016; Available online: https://www.qualcomm.com/media/documents/files/heavy-reading-whitepaper-exploring-5g-new-radio-use-cases-capabilities-timeline.pdf (accessed on 12 June 2021).
- Laraqui, K.; Tombaz, S.; Furuskär, A.; Skubic, B.; Nazari, A.; Trojer, E. 5G and Fixed Wireless Access; Technology Review; Ericsson: Stockholm, Sweden, 2016; Volume 94, Available online: https://www.ericsson.com/49ec56/assets/local/reports-papers/ericsson-technology-review/docs/2016/etr-5g-and-fixed-wireless-access.pdf (accessed on 24 July 2021).
- Schnaufer, D.; Peterson, B. Delivering 5G mmWave Fixed Wireless Access. Technical ReportEDN Network. 2017. Available online: https://www.edn.com/delivering-5g-mmwave-fixed-wireless-access/ (accessed on 24 July 2021).
- Dano, M. Fixed 5G Was Tested by the Cable Industry, and It Came up a Bit Short; Editorial; Fierce Wireless: Washington, DC, USA, 2017; Available online: https://www.fiercewireless.com/5g/editor-s-corner-cable-industry-tested-fixed-5g-and-it-came-up-a-bit-short (accessed on 24 July 2021).
- Peterson, B.; Schnaufer, D. 5G Fixed Wireless Access Array and RF Front-End Trade-Offs. Microw. J. 2018, 11, 1–9. [Google Scholar]
- Matsue, H.; Kubota, S.; Hojo, H.; Watanabe, K.; Saito, T.; Aikawa, S.; Sato, A. Future systems and technologies for broadband wireless access services. In Proceedings of the 2003 IEEE Topical Conference on Wireless Communication Technology, Honolulu, HI, USA, 15–17 October 2003; pp. 156–157. [Google Scholar] [CrossRef]
- CORNING. Broadband Technology Overview; White Paper, wp6321; Corning: New York, NY, USA, 2005; Available online: http://www.ddwei.info/pdf/Broadband/2.pdf (accessed on 23 May 2021).
- Talukdar, R.; Saikia, M. Evolution and Innovation in 5G Cellular Communication System and Beyond: A Study. arXiv 2014, arXiv:1407.4335. [Google Scholar]
- Henkel, R. Broadband Over Power Lines; White Paper; Ratepayer Advocate: Newark, NJ, USA, 2005; Available online: https://www.state.nj.us/rpa/BPLwhitepaper.pdf (accessed on 13 July 2021).
- State and Future of Broadband Technologies. Technical paper; European Commission: Auderghem, Belgium, 2015; Available online: http://europedirectpuglia.eu/files/State-and-future-of-broadband-technologies.pdf (accessed on 13 May 2021).
- Dahlman, E.; Parkvall, S.; Skold, J. 4G: LTE/LTE-Advanced for Mobile Broadband; Academic Press: Oxford, UK, 2011. [Google Scholar]
- Dahlman, E.; Parkvall, S.; Skold, J. 5G NR: The Next Generation Wireless Access Technology; Academic Press: Oxford, UK, 2018. [Google Scholar]
- Das, S.; Li, S.; Monogioudis, P.; Nagaraj, S.; Ramakrishna, S.; Rudrapatna, A.N.; Venkatesan, S.; Vasudevan, S.; Viswanathan, H.; Zou, J. EV-DO revision C: Evolution of the CDMA2000*data optimized system to higher spectral efficiencies and enhanced services. Bell Labs Tech. J. 2007, 11, 5–24. [Google Scholar] [CrossRef]
- Ranaweera, C.; Monti, P.; Skubic, B.; Wong, E.; Furdek, M.; Wosinska, L.; Machuca, C.M.; Nirmalathas, A.; Lim, C. Optical Transport Network Design for 5G Fixed Wireless Access. J. Light. Technol. 2019, 37, 3893–3901. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Effenberger, F. Emerging optical access network technologies for 5G wireless [invited]. IEEE/OSA J. Opt. Commun. Netw. 2016, 8, B70–B79. [Google Scholar] [CrossRef]
- Sehier, P.; Chanclou, P.; Benzaoui, N.; Chen, D.; Kettunen, K.; Lemke, M.; Pointurier, Y.; Dom, P. Transport evolution for the RAN of the future [Invited]. IEEE/OSA J. Opt. Commun. Netw. 2019, 11, B97–B108. [Google Scholar] [CrossRef]
- Velasco, L.; Castro, A.; Asensio, A.; Ruiz, M.; Liu, G.; Qin, C.; Proietti, R.; Yoo, S.B. Meeting the requirements to deploy cloud RAN over optical networks. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, B22–B32. [Google Scholar] [CrossRef]
- Laraqui, K.; Tombaz, S.; Furuskär, A.; Skubic, B.; Nazari, A.; Trojer, E. Fixed Wireless Access on a Massive Scale with 5G; Technology Review; Ericsson: Stockholm, Sweden, 2017; Volume 94, Available online: https://www.academia.edu/30543214/Fixed_wireless_access_on_a_massive_scale_with_5G (accessed on 20 August 2021).
- Ali, M.A.; Ellinas, G.; Erkan, H.; Hadjiantonis, A.; Dorsinville, R. On the Vision of Complete Fixed-Mobile Convergence. J. Light. Technol. 2010, 28, 2343–2357. [Google Scholar] [CrossRef]
- Thyagaturu, A.S.; Alharbi, Z.; Reisslein, M. R-FFT: Function Split at IFFT/FFT in Unified LTE CRAN and Cable Access Network. IEEE Trans. Broadcast. 2018, 64, 648–665. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, Z.; Thyagaturu, A.S.; Reisslein, M.; El Bakoury, H.; Zheng, R. Performance Comparison of R-PHY and R-MACPHY Modular Cable Access Network Architectures. IEEE Trans. Broadcast. 2018, 64, 128–145. [Google Scholar] [CrossRef]
- Ghazisaidi, N.; Maier, M. Fiber-wireless (FiWi) access networks: Challenges and opportunities. IEEE Netw. 2011, 25, 36–42. [Google Scholar] [CrossRef]
- Mastorakis, G.; Kormentzas, G.; Pallis, E. A Fusion IP/DVB Networking Environment for Providing Always-On Connectivity and Triple-Play Services to Urban and Rural Areas. IEEE Netw. 2007, 21, 21–27. [Google Scholar] [CrossRef]
- Tzanakaki, A.; Anastasopoulos, M.P.; Simeonidou, D. Converged optical, wireless, and data center network infrastructures for 5G services. IEEE/OSA J. Opt. Commun. Netw. 2019, 11, A111–A122. [Google Scholar] [CrossRef] [Green Version]
- Atakora, M.; Chenji, H. A Multicast Technique for Fixed and Mobile Optical Wireless Backhaul in 5G Networks. IEEE Access 2018, 6, 27491–27506. [Google Scholar] [CrossRef]
- Artiga, X.; Perez-Neira, A.; Baranda, J.; Lagunas, E.; Chatzinotas, S.; Zetik, R.; Gorski, P.; Ntougias, K.; Perez, D.; Ziaragkas, G. Shared Access Satellite-Terrestrial Reconfigurable Backhaul Network Enabled by Smart Antennas at MmWave Band. IEEE Netw. 2018, 32, 46–53. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J.; Shi, Y.; Wong, V.W.S. Flexible Functional Split Design for Downlink C-RAN with Capacity-Constrained Fronthaul. IEEE Trans. Veh. Technol. 2019, 68, 6050–6063. [Google Scholar] [CrossRef]
- Harutyunyan, D.; Riggio, R. Flex5G: Flexible Functional Split in 5G Networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 961–975. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Saha, R.K.; Nanba, S.; Nishimura, K. Experimental Evaluation of RAN Slicing Architecture With Flexibly Located Functional Components of Base Station According to Diverse 5G Services. IEEE Access 2019, 7, 76470–76479. [Google Scholar] [CrossRef]
- Shehata, M.; Elbanna, A.; Musumeci, F.; Tornatore, M. Multiplexing Gain and Processing Savings of 5G Radio-Access-Network Functional Splits. IEEE Trans. Green Commun. Netw. 2018, 2, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Liu, X.; Effenberger, F.; Chao, J. Low-latency high-efficiency mobile fronthaul with TDM-PON (mobile-PON). IEEE/OSA J. Opt. Commun. Netw. 2018, 10, A20–A26. [Google Scholar] [CrossRef]
- Larsen, L.M.P.; Checko, A.; Christiansen, H.L. A Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks. IEEE Commun. Surv. Tutor. 2018, 21, 146–172. [Google Scholar] [CrossRef] [Green Version]
- Camps-Mur, D.; Gutierrez, J.; Grass, E.; Tzanakaki, A.; Flegkas, P.; Choumas, K.; Giatsios, D.; Beldachi, A.F.; Diallo, T.; Zou, J.; et al. 5G-XHaul: A Novel Wireless-Optical SDN Transport Network to Support Joint 5G Backhaul and Fronthaul Services. IEEE Commun. Mag. 2019, 57, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Checko, A.; Avramova, A.P.; Berger, M.S.; Christiansen, H.L. Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings. J. Commun. Netw. 2016, 18, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Lu, C.; Berg, M.; Ödling, P. Functional Split of Zero-Forcing Based Massive MIMO for Fronthaul Load Reduction. IEEE Access 2018, 6, 6350–6359. [Google Scholar] [CrossRef]
- Kondepu, K.; Sgambelluri, A.; Sambo, N.; Giannone, F.; Castoldi, P.; Valcarenghi, L. Orchestrating lightpath recovery and flexible functional split to preserve virtualized RAN connectivity. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, K.; Kuwano, S.; Shimizu, T.; Terada, J.; Otaka, A. Performance Evaluation of Ethernet-based Mobile Fronthaul and Wireless COMP in Split-PHY Processing. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, A46–A54. [Google Scholar] [CrossRef]
- Alimi, I.A.; Teixeira, A.L.; Monteiro, P.P. Toward an Efficient C-RAN Optical Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements, Challenges, and Solutions. IEEE Commun. Surv. Tutor. 2018, 20, 708–769. [Google Scholar] [CrossRef]
- Chanclou, P.; Neto, L.A.; Grzybowski, K.; Tayq, Z.; Saliou, F.; Genay, N. Mobile fronthaul architecture and technologies: A RAN equipment assessment [invited]. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, A1–A7. [Google Scholar] [CrossRef]
- Xavier, G.P.; Kantarci, B. A survey on the communication and network enablers for cloud-based services: State of the art, challenges, and opportunities. Ann. Telecommun. 2018, 73, 169–192. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, S.; Wang, L.; Guo, Q.; Wang, H.; Liu, Z. Routing Algorithm with Virtual Topology Toward to Huge Numbers of LEO Mobile Satellite Network Based on SDN. Mob. Netw. Appl. 2018, 23, 285–300. [Google Scholar] [CrossRef]
- Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J.J.; Lorca, J.; Folgueira, J. Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges. IEEE Commun. Mag. 2017, 55, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Fichera, S.; Martínez, R.; Martini, B.; Gharbaoui, M.; Casellas, R.; Vilalta, D.R.; Muñoz, R.; Castoldi, P. Latency-aware resource orchestration in SDN-based packet over optical flexi-grid transport networks. IEEE/OSA J. Opt. Commun. Netw. 2019, 11, B83–B96. [Google Scholar] [CrossRef]
- Mpatziakas, A.; Papadopoulos, S.; Drosou, A.; Tzovaras, D. Multi-objective Optimisation for Slice-aware Resource Orchestration in 5G Networks. In Proceedings of the 2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 24–27 February 2020; pp. 79–86. [Google Scholar] [CrossRef]
- Thyagaturu, A.S.; Mercian, A.; McGarry, M.P.; Reisslein, M.; Kellerer, W. Software Defined Optical Networks (SDONs): A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 2738–2786. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Zhang, X.; Shen, S.; Yu, S.; Ren, J.; Lin, R. T-trail: Link failure monitoring in software-defined optical networks. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 344–352. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Kim, I.; Palacharla, P.; Sekiya, M. Virtual network provisioning over distance-adaptive flexible-grid optical networks [Invited]. IEEE/OSA J. Opt. Commun. Netw. 2015, 7, A318–A325. [Google Scholar] [CrossRef]
- Cao, X.; Yoshikane, N.; Popescu, I.; Tsuritani, T.; Morita, I. Software-defined optical networks and network abstraction with functional service design [Invited]. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, C65–C75. [Google Scholar] [CrossRef]
- Yang, H.; Liang, Y.; Yao, Q.; Guo, S.; Yu, A.; Zhang, J. Blockchain-based secure distributed control for software defined optical networking. China Commun. 2019, 16, 42–54. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Lyu, C.; Duan, Z.; Ji, Y. Experiment demonstration of multi-layer restoration in service-oriented software defined optical network. Electron. Lett. 2017, 53, 935–937. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, B.; Li, Z.; Wang, W.; Wang, Y.; Zhang, J. Coordination between control layer AI and on-board AI in optical transport networks [Invited]. IEEE/OSA J. Opt. Commun. Netw. 2020, 12, A49–A57. [Google Scholar] [CrossRef]
- Muñoz, R.; Vilalta, R.; Yoshikane, N.; Casellas, R.; Martínez, R.; Tsuritani, T.; Morita, I. Integration of IoT, Transport SDN, and Edge/Cloud Computing for Dynamic Distribution of IoT Analytics and Efficient Use of Network Resources. J. Light. Technol. 2018, 36, 1420–1428. [Google Scholar] [CrossRef]
- Amin, R.; Reisslein, M.; Shah, N. Hybrid SDN Networks: A Survey of Existing Approaches. IEEE Commun. Surv. Tutor. 2018, 20, 3259–3306. [Google Scholar] [CrossRef]
- Liu, J.; Shou, G.; Liu, Y.; Hu, Y.; Guo, Z. Performance Evaluation of Integrated Multi-Access Edge Computing and Fiber-Wireless Access Networks. IEEE Access 2018, 6, 30269–30279. [Google Scholar] [CrossRef]
- Tralli, V.; Veronesi, R.; Zorzi, M. Power-shaped advanced resource assignment (PSARA) for fixed broadband wireless access systems. IEEE Trans. Wirel. Commun. 2004, 3, 2207–2220. [Google Scholar] [CrossRef]
- Qiu, X.; Chawla, K. Resource assignment in a fixed broadband wireless system. IEEE Commun. Lett. 1997, 1, 108–110. [Google Scholar] [CrossRef]
- Chawla, K.; Qiu, X. Quasi-static resource allocation with interference avoidance for fixed wireless systems. IEEE J. Sel. Areas Commun. 1999, 17, 493–504. [Google Scholar] [CrossRef]
- Blaunstein, N.; Giladi, R.; Freedman, A.; Levin, M. Unified approach of GOS optimization for fixed wireless access. IEEE Trans. Veh. Technol. 2002, 51, 200–208. [Google Scholar] [CrossRef]
- Mohsin, M.; Batalla, J.M.; Pallis, E.; Mastorakis, G.; Markakis, E.K.; Mavromoustakis, C.X. On Analyzing Beamforming Implementation in O-RAN 5G. Electronics 2021, 10, 2162. [Google Scholar] [CrossRef]
- Johnston, D.; Lee, R. Fixed Wireless Access Technical Challenges and Solutions; Opinion; Telecoms: London, UK, 2018; Available online: https://telecoms.com/opinion/fixed-wireless-access-technical-challenges-and-solutions/ (accessed on 19 May 2021).
- Kimura, Y.; Miura, Y.; Shirosaki, T.; Taniguchi, T.; Kazama, Y.; Hirokawa, J.; Ando, M.; Shirouzu, T. A low-cost and very compact wireless terminal integrated on the back of a waveguide planar array for 26 GHz band fixed wireless access (FWA) systems. IEEE Trans. Antennas Propag. 2005, 53, 2456–2463. [Google Scholar] [CrossRef]
- Miura, O.; Shirosaki, T.; Taniguchi, S.; Kazama, A.; Kimura, U.; Hirokawa, J.; Ando, M. A low-cost and very small wireless terminal integrated on the back of a flat panel array for 26 GHz band fixed wireless access systems. In Proceedings of the 2003 IEEE Topical Conference on Wireless Communication Technology, Honolulu, HI, USA, 15–17 October 2003; pp. 325–326. [Google Scholar] [CrossRef]
- Itokawa, K.; Nishikawa, T.; Matsushita, A.; Nishino, M.; Takahata, Y.; Shindo, Y. Advanced Wireless IP Access System (WIPAS) for Higher Speed and Real-Time Communication Services. In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Yoshie, T.; Nishino, M.; Takahata, Y.; Shindo, Y. Advanced Wireless IP Access System (WIPAS) for fixed wireless access (FWA)—Broadband access system for triple play services by “fiber + radio”. In Proceedings of the 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, 15–18 September 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Hart, C. Fixed wireless access: A market and system overview. Electron. Commun. Eng. J. 1998, 10, 213–220. [Google Scholar] [CrossRef]
- Niknam, S.; Nasir, A.A.; Mehrpouyan, H.; Natarajan, B. A Multiband OFDMA Heterogeneous Network for Millimeter Wave 5G Wireless Applications. IEEE Access 2016, 4, 5640–5648. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, Q.; Smolders, A.B.; Jiao, Y.; Wale, M.J.; Oh, C.W.; Wu, H.; Koonen, A.M.J. Advanced Integration Techniques on Broadband Millimeter-Wave Beam Steering for 5G Wireless Networks and Beyond. IEEE J. Quantum Electron. 2016, 52, 1–20. [Google Scholar] [CrossRef]
- Wu, T.; Chang, T. Interference Reduction by Millimeter Wave Technology for 5G-Based Green Communications. IEEE Access 2016, 4, 10228–10234. [Google Scholar] [CrossRef]
- Li, T.; Huang, M.; Wang, H. Millimeter-Wave Continuous-Mode Power Amplifier for 5G MIMO Applications. IEEE Trans. Microw. Theory Tech. 2019, 67, 3088–3098. [Google Scholar] [CrossRef]
- Sung, M.; Kim, J.; Kim, E.; Cho, S.; Won, Y.; Lim, B.; Pyun, S.; Lee, J.K.; Lee, J.H. 5G Trial Services Demonstration: IFoF-Based Distributed Antenna System in 28 GHz Millimeter-Wave Supporting Gigabit Mobile Services. J. Light. Technol. 2019, 37, 3592–3601. [Google Scholar] [CrossRef]
- Jilani, S.F.; Alomainy, A. A Multiband Millimeter-Wave 2-D Array Based on Enhanced Franklin Antenna for 5G Wireless Systems. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2983–2986. [Google Scholar] [CrossRef]
- Samadi Taheri, M.M.; Abdipour, A.; Zhang, S.; Pedersen, G.F. Integrated Millimeter-Wave Wideband End-Fire 5G Beam Steerable Array and Low-Frequency 4G LTE Antenna in Mobile Terminals. IEEE Trans. Veh. Technol. 2019, 68, 4042–4046. [Google Scholar] [CrossRef] [Green Version]
- Dzagbletey, P.A.; Jung, Y. Stacked Microstrip Linear Array for Millimeter-Wave 5G Baseband Communication. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 780–783. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Song, L.; Vucetic, B. Multi-gigabit millimeter wave wireless communications for 5G: From fixed access to cellular networks. IEEE Commun. Mag. 2015, 53, 168–178. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhu, L.; Choi, J.; Xia, P.; Xia, X. Joint Power Allocation and Beamforming for Non-Orthogonal Multiple Access (NOMA) in 5G Millimeter Wave Communications. IEEE Trans. Wirel. Commun. 2018, 17, 2961–2974. [Google Scholar] [CrossRef] [Green Version]
- Aliakbari, H.; Abdipour, A.; Costanzo, A.; Masotti, D.; Mirzavand, R.; Mousavi, P. ANN-based design of a versatile millimetre-wave slotted patch multi-antenna configuration for 5G scenarios. IET Microw. Antennas Propag. 2017, 11, 1288–1295. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O.; Xia, X. Joint Tx-Rx Beamforming and Power Allocation for 5G Millimeter-Wave Non-Orthogonal Multiple Access Networks. IEEE Trans. Commun. 2019, 67, 5114–5125. [Google Scholar] [CrossRef] [Green Version]
- Aliakbari, H.; Abdipour, A.; Costanzo, A.; Masotti, D.; Mirzavand, R.; Mousavi, P. Far-Field-Based Nonlinear Optimization of Millimeter-Wave Active Antenna for 5G Services. IEEE Trans. Microw. Theory Tech. 2019, 67, 2985–2997. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, J.; Lan, J.; Yang, B.; Yu, Z. A High-Precision Hybrid Analog and Digital Beamforming Transceiver System for 5G Millimeter-Wave Communication. IEEE Access 2019, 7, 83012–83023. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Dong, Y.; Zhou, J.; Hong, W. Compact Tapered Slot Antenna Array for 5G Millimeter-Wave Massive MIMO Systems. IEEE Trans. Antennas Propag. 2017, 65, 6721–6727. [Google Scholar] [CrossRef]
- Yu, C.; Jing, J.; Shao, H.; Jiang, Z.H.; Yan, P.; Zhu, X.; Hong, W.; Zhu, A. Full-Angle Digital Predistortion of 5G Millimeter-Wave Massive MIMO Transmitters. IEEE Trans. Microw. Theory Tech. 2019, 67, 2847–2860. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital Beamforming-Based Massive MIMO Transceiver for 5G Millimeter-Wave Communications. IEEE Trans. Microw. Theory Tech. 2018, 66, 3403–3418. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, M.; Chen, Y.; Peng, P.; Wang, H.; Chang, G. A 4-Channel Beamformer for 9-Gb/s MMW 5G Fixed-Wireless Access Over 25-km SMF with Bit-Loading OFDM. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Piqueras, M.A.; Grosskopf, G.; Vidal, B.; Herrera, J.; Martinez, J.M.; Sanchis, P.; Polo, V.; Corral, J.L.; Marceaux, A.; Galiere, J.; et al. Optically beamformed beam-switched adaptive antennas for fixed and mobile broad-band wireless access networks. IEEE Trans. Microw. Theory Tech. 2006, 54, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Chizhik, D.; Feick, R.; Castro, G.; Rodríguez, M.; Valenzuela, R.A. Suburban Residential Building Penetration Loss at 28 GHz for Fixed Wireless Access. IEEE Wirel. Commun. Lett. 2018, 7, 890–893. [Google Scholar] [CrossRef] [Green Version]
- Drougas, A.E.; Panagopoulos, A.D.; Cottis, P.G. Packet error statistics of LOS broadband fixed wireless access channels. IEEE Trans. Commun. 2009, 57, 22–25. [Google Scholar] [CrossRef]
- Drougas, A.E.; Panagopoulos, A.D.; Cottis, P.G. Data Transmission over Rain-Faded Broadband Fixed Wireless Access Channels. IEEE Trans. Consum. Electron. 2007, 53, 871–876. [Google Scholar] [CrossRef]
- Willink, T.J. MIMO OFDM for broadband fixed wireless access. IEEE Proc. Commun. 2005, 152, 75–81. [Google Scholar] [CrossRef]
- Panagopoulos, A.D.; Liolis, K.P.; Cottis, P.G. Rician K-Factor Distribution in Broadband Fixed Wireless Access Channels under Rain Fades. IEEE Commun. Lett. 2007, 11, 301–303. [Google Scholar] [CrossRef]
- Liu, L.; Hong, W.; Wang, H.; Yang, G.; Zhang, N.; Zhao, H.; Chang, J.; Yu, C.; Yu, X.; Tang, H.; et al. Characterization of Line-of-Sight MIMO Channel for Fixed Wireless Communications. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 36–39. [Google Scholar] [CrossRef]
- Panagopoulos, A.D.; Skouloudakis, P.V.; Cottis, P.G. Quality of Service of Broadband Fixed Wireless Access QPSK Channels Interfered by Adjacent Terrestrial Links. IEEE Trans. Antennas Propag. 2006, 54, 3317–3326. [Google Scholar] [CrossRef]
- Enjamio, C.; Vilar, E.; Perez-Fontan, F. Rain Scatter Interference in mm-Wave Broadband Fixed Wireless Access Networks Caused by a 2-D Dynamic Rain Environment. IEEE Trans. Wirel. Commun. 2007, 6, 2497–2507. [Google Scholar] [CrossRef]
- Sinha, A.; Mitchell, K.; Medhi, D. Periodicity in TCP session arrivals in broadband fixed wireless access networks. In Proceedings of the 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 30 May–1 June 2005; Volume 3, pp. 2092–2095. [Google Scholar] [CrossRef]
- Wang, Q.; Agarwal, A. A probing process for dynamic resource allocation in fixed broadband wireless access networks. IEEE Trans. Veh. Technol. 2003, 52, 1143–1157. [Google Scholar] [CrossRef]
- Farmer, J.; Lane, B.; Bourg, K.; Wang, W. Chapter 1—Introduction. In FTTx Networks; Farmer, J., Lane, B., Bourg, K., Wang, W., Eds.; Morgan Kaufmann: Boston, MA, USA, 2017; pp. 3–11. [Google Scholar] [CrossRef]
- Schonfeld, D. 9.3—Video Communication Networks. In Handbook of Image and Video Processing, 2nd ed.; Bovik, A., Ed.; Communications, Networking and Multimedia; Academic Press: Burlington, NJ, USA, 2005; pp. 1031–1064. [Google Scholar] [CrossRef]
- Lin, Y. On IEEE 802.14 medium access control protocol. IEEE Commun. Surv. 1998, 1, 2–10. [Google Scholar] [CrossRef]
- Chang, K.; Liao, W. The Contention Behavior of DOCSIS in CATV Networks. IEEE Trans. Broadcast. 2007, 53, 660–669. [Google Scholar] [CrossRef]
- Lin, Y.-D.; Huang, C.-Y.; Yin, W.-M. Allocation and scheduling algorithms for IEEE 802.14 and MCNS in hybrid fiber coaxial networks. IEEE Trans. Broadcast. 1998, 44, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Hamzeh, B.; Toy, M.; Fu, Y.; Martin, J. DOCSIS 3.1: Scaling broadband cable to Gigabit speeds. IEEE Commun. Mag. 2015, 53, 108–113. [Google Scholar] [CrossRef]
- Wang, J.; Jia, Z.; Campos, L.A.; Cheng, L.; Knittle, C.; Chang, G. Delta-Sigma Digitization and Optical Coherent Transmission of DOCSIS 3.1 Signals in Hybrid Fiber Coax Networks. J. Light. Technol. 2018, 36, 568–579. [Google Scholar] [CrossRef]
- CableLabs. CableLabs Significantly Increases Internet Speeds on HFC Network; Technical Report; CableLabs: Louisville, CO, USA, 2017; Available online: https://www-res.cablelabs.com/wp-content/uploads/2016/12/28093128/Full_Duplex_DOCSIS.Press_Release.pdf (accessed on 27 August 2021).
- Pfrommer, H.; Piqueras, M.A.; Herrera, J.; Polo, V.; Martinez, A.; Karlsson, S.; Kjebon, O.; Schatz, R.; Yu, Y.; Tsegaye, T.; et al. Full-duplex DOCSIS/WirelessDOCSIS fiber-radio network employing packaged AFPM-based base-stations. IEEE Photonics Technol. Lett. 2006, 18, 406–408. [Google Scholar] [CrossRef]
- Smith, C. LMDS: Local Mutipoint Distribution Service; McGraw-Hill Education: New York, NY, USA, 2000. [Google Scholar]
- CableLabs. Driving Gigabit Speeds: From Lab to Consumer; CableLabs: Louisville, CO, USA, 2018; Available online: https://www-res.cablelabs.com/wp-content/uploads/2018/11/28092656/Driving-Gigabit-Speeds-From-Lab-to-Consumer-1.pdf (accessed on 27 July 2021).
- CableLabs. 10G Technology: DOCSIS 4.0 Technology; CableLabs: Louisville, CO, USA, 2020; Available online: https://www.cablelabs.com/technologies/full-duplex-docsis#How-did-Full-Duplex-DOCSIS-3.1-evolve (accessed on 18 August 2021).
- Holmes, W. HFC Cable Architecture; Presentation. 2018. Available online: https://courses.cs.duke.edu//spring18/compsci356/slides/cable-hfc-intro.pdf (accessed on 17 July 2021).
- Techpowerup. DOCSIS 3.1 Makes 10 Gbps Downstream & 1 Gbps Upstream Speeds a Reality; Press Release; Techpowerup: Dresden, Germany, 2017; Available online: https://www.techpowerup.com/238349/docsis-3-1-makes-10-gbps-downstream-1-gbps-upstream-speeds-a-reality (accessed on 27 August 2021).
- CableLabs. Cable Broadband Technology Gigabit Evolution; CableLabs: Louisville, CO, USA, 2016; Available online: https://www.cablelabs.com/insights/cable-broadband-technology-gigabit-evolution (accessed on 24 May 2021).
- Qorvo. Enabling 10 Gbps Cable Networks with Full Duplex DOCSIS 3.1; Design Hub/Blog; Qorvo: Greensboro, NC, USA, 2018; Available online: https://www.qorvo.com/design-hub/blog/enabling-10gbps-cable-networks-with-full-duplex-docsis-3-1 (accessed on 27 August 2021).
- Jackson, M. CableLabs Finish Spec for Symmetric 10Gbps DOCSIS 3.1 Cable Broadband; Press Release; ISPreview: London, UK, 2017; Available online: https://www.ispreview.co.uk/index.php/2017/10/cablelabs-finish-spec-symmetric-10gbps-docsis-3-1-cable-broadband.html (accessed on 17 June 2021).
- Cano, C.; Pittolo, A.; Malone, D.; Lampe, L.; Tonello, A.M.; Dabak, A.G. State of the Art in Power Line Communications: From the Applications to the Medium. IEEE J. Sel. Areas Commun. 2016, 34, 1935–1952. [Google Scholar] [CrossRef] [Green Version]
- Cottis, P.G. Broadband Transmission via Underground Medium-Voltage Power Lines—Part I: Transmission Characteristics. IEEE Trans. Power Deliv. 2010, 25, 2414–2424. [Google Scholar] [CrossRef]
- Lazaropoulos, A.G.; Cottis, P.G. Broadband Transmission via Underground Medium-Voltage Power Lines—Part II: Capacity. IEEE Trans. Power Deliv. 2010, 25, 2425–2434. [Google Scholar] [CrossRef]
- National Communications System. Broadband over Power Lines; Technical Information Bulletin 07-1; National Communications System: Arlington, TX, USA, 2007; Available online: https://fdocuments.in/document/internet-through-transmit-ion-line.html (accessed on 23 April 2021).
- Chandna, V.K.; Zahida, M. Effect of Varying Topologies on the Performance of Broadband Over Power Line. IEEE Trans. Power Deliv. 2010, 25, 2371–2375. [Google Scholar] [CrossRef]
- Milioudis, A.N.; Syranidis, K.N.; Andreou, G.T.; Labridis, D.P. Modeling of Medium-Voltage Power-Line Communication Systems Noise Levels. IEEE Trans. Power Deliv. 2013, 28, 2004–2013. [Google Scholar] [CrossRef]
- Galli, S.; Scaglione, A.; Wang, Z. For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid. Proc. IEEE 2011, 99, 998–1027. [Google Scholar] [CrossRef] [Green Version]
- Anatory, J.; Theethayi, N.; Thottappillil, R. Power-Line Communication Channel Model for Interconnected Networks—Part I: Two-Conductor System. IEEE Trans. Power Deliv. 2009, 24, 118–123. [Google Scholar] [CrossRef]
- Tsiaflakis, P.; Necoara, I.; Suykens, J.A.K.; Moonen, M. Improved Dual Decomposition Based Optimization for DSL Dynamic Spectrum Management. IEEE Trans. Signal Process. 2010, 58, 2230–2245. [Google Scholar] [CrossRef] [Green Version]
- Yoshii, S. Spectrum Management of DSL Systems in Japan. In Proceedings of the TENCON 2005—2005 IEEE Region 10 Conference, Melbourne, VIC, Australia, 21–24 November 2005; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Corporation, P. The DSL Sourcebook: The Comprehensive Resource on Digital Subscriber Line Technology, 3rd ed.; Paradyne Corporation: Largo, FL, USA, 2000. [Google Scholar]
- Carne, E.B. Wire, Fiber, Cable, and Wireless Access. In Connections for the Digital Age: Multimedia Communications for Mobile, Nomadic and Fixed Devices; Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Green, J.H. Access Technologies: DSL and Cable- (Executive Briefings in Key Technologies); McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Starr, T.; Silverman, P.; Thomas, S. DSL Advances; Pearson Education: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Golden, P.; Dedieu, H.; Jacobsen, K.S. Implementation and Applications of DSL Technology, 1st ed.; Auerbach Publications: Boston, MA, USA, 2007. [Google Scholar]
- ITU-D Study Group. Report on DSL Technologies; Technical Paper; Series G; ITU-D Study Group: Geneva, Switzerland, 2002; Available online: https://www.itu.int/dms_pub/itu-d/opb/stg/D-STG-SG02.12-2002-OAS-PDF-E.pdf (accessed on 7 June 2021).
- Kerpez, K.J.; Kinney, R. Integrated DSL Test, Analysis, and Operations. IEEE Trans. Instrum. Meas. 2008, 57, 770–780. [Google Scholar] [CrossRef]
- Argus. Physics Booster: Measurement Technology for VSDL2 Vectoring New Technology for Maximum Bandwidth; Article, Version: 1.0; Argus: Ludenscheid, Germany, 2013; Available online: https://www.argus.info/fileadmin/downloads/argus_166/fachartikel/english/096_Physics%20booster_Measurement%20VDSL%20Vectoring_U_V_09_2014.pdf (accessed on 7 August 2021).
- ITU-T. Wireline Broadband Access Network and Home Networking; Technical Paper; Series G; ITU-T: Geneva, Switzerland, 2013; Available online: https://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-HOME-2011-PDF-E.pdf (accessed on 23 July 2021).
- Huberman, S.; Leung, C.; Le-Ngoc, T. Dynamic Spectrum Management (DSM) Algorithms for Multi-User xDSL. IEEE Commun. Surv. Tutor. 2012, 14, 109–130. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.; Lafleche, S.; Huang, X.; Dumoulin, S.; Paiement, R.; Florea, A. Capability Evaluation of Fixed Wireless Access Systems to Deliver Broadband Internet Services; CRC Technical Report, Release 8; Communications Research Centre: Ottawa, ON, Canada, 2020; Available online: https://www.ic.gc.ca/eic/site/139.nsf/vwapj/CapabilityEvaluationBroadbandInternetService.pdf/\protect\T1\textdollarfile/CapabilityEvaluationBroadbandInternetService.pdf (accessed on 3 September 2021).
- Heath, M.; ADSL2 and ADSL2+. Technical Report. Increase Broadband Speed. 2018. Available online: https://www.increasebroadbandspeed.co.uk/adsl2 (accessed on 12 August 2021).
- Alimi, I.; Tavares, A.; Pinho, C.; Abdalla, A.M.; Monteiro, P.; Teixeira, A. Enabling Optical Wired and Wireless Technologies for 5G and Beyond Networks. In Telecommunication Systems; Alimi, I., Monteiro, P., Teixeira, A., Eds.; IntechOpen: London, UK, 2019; Chapter 1. [Google Scholar] [CrossRef] [Green Version]
- The Application of TDM-PON and WDM-PON; Article; Fiber-Optical-Networking. 2015. Available online: http://www.fiber-optical-networking.com/the-application-of-tdm-pon-and-wdm-pon.html (accessed on 12 August 2021).
- Arai, Y.; Naganuma, S. The geographical digital divide in broadband access and governmental policies in Japan: Three case studies. Netcom 2010, 24, 7–26. [Google Scholar] [CrossRef] [Green Version]
- Arai, Y.; Naganuma, S.; Satake, Y. Local government broadband policies for areas with limited Internet access. Netcom 2012, 26, 251–274. [Google Scholar] [CrossRef]
- Broadbandtrends. FTTH to Represent Nearly 50% of Global Fixed Broadband Subscribers by 2022; Technical Report; Broadbandtrends: Roanoke, VA, USA, 2017; Available online: https://broadbandtrends.wordpress.com/2017/01/18/ftth-to-represent-nearly-50-of-fixed-broadband-subscribers-by-2022/ (accessed on 18 August 2021).
- Lin, C. Broadband Optical Access Networks and Fiber-to-the-Home: Systems Technologies and Deployment Strategies; Wiley: Chichester, UK, 2006. [Google Scholar]
- Green, P. Fiber to the Home: The New Empowerment; Wiley Survival Guides in Engineering and Science; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Muhammad, N.A.; Rahman, T.A.; Rahim, S.K.A. The effects of foliage on 5.8GHz Broadband Fixed Wireless Access (BFWA). In Proceedings of the 2010 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Port Dickson, Malaysia, 9–11 November 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Pandya, R. Introduction to WLLs: Application and Deployment for Fixed and Broadband Services, 1st ed.; IEEE Press: Piscataway, NJ, USA, 2004. [Google Scholar]
- Nguyen, T.; Remy, T.; Sistanizadeh, K. Attenuation and interference measurements conducted by Bell Atlantic to investigate the effect on an operational multichannel multipoint distribution service (MMDS). In Proceedings of the COM’96, First Annual Conference on Emerging Technologies and Applications in Communications, Portland, OR, USA, 7–10 May 1996; pp. 88–91. [Google Scholar] [CrossRef]
- Seidel, S.Y.; Arnold, H.W. 28 GHz Local Multipoint Distribution Service (LMDS): Strengths and Challenges. In Wireless Personal Communications: The Evolution of Personal Communications Systems; Rappaport, T.S., Woerner, B.D., Reed, J.H., Eds.; Springer: Boston, MA, USA, 1996; pp. 7–17. [Google Scholar] [CrossRef]
- Chin, K.; Chang, H.; Liu, J. Design of LTCC Wideband Patch Antenna for LMDS Band Applications. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 1111–1114. [Google Scholar] [CrossRef]
- Anastasopoulos, M.P.; Petraki, D.K.; Chen, H. Secure communications in local multipoint distribution service (LMDS) networks. IEEE Trans. Wirel. Commun. 2009, 8, 5400–5403. [Google Scholar] [CrossRef]
- Papazian, P.B.; Hufford, G.A.; Achatz, R.J.; Hoffman, R. Study of the local multipoint distribution service radio channel. IEEE Trans. Broadcast. 1997, 43, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y. Parallel concatenated convolutional coding for a local multipoint distribution service system. IEEE Trans. Consum. Electron. 2000, 46, 154–160. [Google Scholar] [CrossRef]
- Roman, V.I. Frequency reuse and system deployment in local multipoint distribution service. IEEE Pers. Commun. 1999, 6, 20–27. [Google Scholar] [CrossRef]
- Andrews, J.; Ghosh, A.; Muhamed, R. Fundamentals of WiMAX: Understanding Broadband Wireless Networking; Prentice Hall Communications Engineering and Emerging Technologies Series from Ted Rappaport; Pearson Education: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Kazaura, K.; Wakamori, K.; Matsumoto, M.; Higashino, T.; Tsukamoto, K.; Komaki, S. RoFSO: A universal platform for convergence of fiber and free-space optical communication networks. IEEE Commun. Mag. 2010, 48, 130–137. [Google Scholar] [CrossRef]
- Taheri, M.; Ansari, N.; Feng, J.; Rojas-Cessa, R.; Zhou, M. Provisioning Internet Access Using FSO in High-Speed Rail Networks. IEEE Netw. 2017, 31, 96–101. [Google Scholar] [CrossRef]
- Alimi, I.A.; Mufutau, A.O.; Teixeira, A.L.; Monteiro, P.P. Performance Analysis of Space-Air-Ground Integrated Network (SAGIN) Over an Arbitrarily Correlated Multivariate FSO Channel. Wirel. Pers. Commun. 2018, 100, 47–66. [Google Scholar] [CrossRef]
- Naila, C.B.; Wakamori, K.; Matsumoto, M.; Bekkali, A.; Tsukamoto, K. Transmission analysis of digital TV signals over a Radio-on-FSO channel. IEEE Commun. Mag. 2012, 50, 137–144. [Google Scholar] [CrossRef]
- Alimi, I.; Shahpari, A.; Ribeiro, V.; Sousa, A.; Monteiro, P.; Teixeira, A. Channel characterization and empirical model for ergodic capacity of free-space optical communication link. Opt. Commun. 2017, 390, 123–129. [Google Scholar] [CrossRef]
- Alimi, I.A.; Abdalla, A.M.; Rodriguez, J.; Monteiro, P.P.; Teixeira, A.L. Spatial Interpolated Lookup Tables (LUTs) Models for Ergodic Capacity of MIMO FSO Systems. IEEE Photonics Technol. Lett. 2017, 29, 583–586. [Google Scholar] [CrossRef]
- Alimi, I.; Shahpari, A.; Sousa, A.; Ferreira, R.; Monteiro, P.; Teixeira, A. Challenges and Opportunities of Optical Wireless Communication Technologies. In Optical Communication Technology; Pinho, P., Ed.; IntechOpen: Rijeka, Croatia, 2017; Chapter 2. [Google Scholar] [CrossRef] [Green Version]
- Alimi, I.A.; Shahpari, A.; Monteiro, P.P.; Teixeira, A.L. Effects of diversity schemes and correlated channels on OWC systems performance. J. Mod. Opt. 2017, 64, 2298–2305. [Google Scholar] [CrossRef]
- Alimi, I.A.; Teixeira, A.L.; Monteiro, P.P. Effects of Correlated Multivariate FSO Channel on Outage Performance of Space-Air-Ground Integrated Network (SAGIN). Wirel. Pers. Commun. 2019, 106, 7–25. [Google Scholar] [CrossRef]
- Bloom, S.; Korevaar, E.; Schuster, J.; Willebrand, H. Understanding the performance of free-space optics (Invited). J. Opt. Netw. 2003, 2, 178–200. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Yang, Q.; Tan, K.; Zhang, J.; Liew, S.C.; Zhang, S. DCAP: Improving the Capacity of WiFi Networks with Distributed Cooperative Access Points. IEEE Trans. Mob. Comput. 2018, 17, 320–333. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, J. Walls Have No Ears: A Non-Intrusive WiFi-Based User Identification System for Mobile Devices. IEEE/ACM Trans. Netw. 2019, 27, 245–257. [Google Scholar] [CrossRef]
- Wang, J.; Luo, J.; Pan, S.J.; Sun, A. Learning-Based Outdoor Localization Exploiting Crowd-Labeled WiFi Hotspots. IEEE Trans. Mob. Comput. 2019, 18, 896–909. [Google Scholar] [CrossRef]
- Kadir, E.A.; Siswanto, A.; Syukur, A. Performance analysis of wireless LAN 802.11n standard for e-Learning. In Proceedings of the 2016 4th International Conference on Information and Communication Technology (ICoICT), Bandung, Indonesia, 25–27 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Tektronix. Wi-Fi: Overview of the 802.11 Physical Layer and Transmitter Measurements; Primer; Tektronix: Beaverton, OR, USA, 2017; Available online: https://www.cnrood.com/en/media/solutions/Wi-Fi_Overview_of_the_802.11_Physical_Layer.pdf (accessed on 18 August 2021).
- Karmakar, R.; Chattopadhyay, S.; Chakraborty, S. Impact of IEEE 802.11n/ac PHY/MAC High Throughput Enhancements on Transport and Application Protocols—A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2050–2091. [Google Scholar] [CrossRef]
- Intel. Helping Define IEEE 802.11 and Other Wireless LAN Standards; Application Note; Intel: Santa Clara, CA, USA, 2018; Available online: https://www.intel.com/content/dam/www/public/us/en/documents/case-studies/802-11-wireless-lan-standards-study.pdf (accessed on 29 August 2021).
- Slavin, B. Wi-Fi Security—The Rise and Fall of WPS. Netstumbler. 2013. Available online: http://www.netstumbler.com/2013/01/18/wi-fi-security-the-rise-and-fall-of-wps/ (accessed on 19 August 2021).
- Cooklev, T. Wireless Communication Standards: A Study of IEEE 802.11, 802.15, 802.16, 1st ed.; IEEE Press: New York, NY, USA, 2004. [Google Scholar]
- Murphy, R. Future-Fi—The Road to 802.11-2020 and Beyond: Chapter 3; Technical report; Wits: Frederick, CO, USA, 2018; Available online: https://www.wirelesstrainingsolutions.com/future-fi-the-road-to-802-11-2020-and-beyond-chapter-3/ (accessed on 20 June 2021).
- Mukaddam, A. 802.11 Alternate PHYs; White Paper; CWNP: Durham City, NC, USA, 2018; Available online: https://www.cwnp.com/uploads/802-11alternatephyswhitepaper.pdf (accessed on 15 May 2021).
- Cisco. IEEE 802.11ax: The Sixth Generation of Wi-Fi; Technical White Paper; Cisco: San Jose, CA, USA, 2020; Available online: https://www.cisco.com/c/en/us/products/collateral/wireless/white-paper-c11-740788.pdf (accessed on 28 July 2021).
- Etemad, K.; Lai, M. Chapter 1—WiMAX Standardization Overview. In WiMAX Technology and Network Evolution; Etemad, K., Lai, M.Y., Eds.; The ComSoc Guides to Communications Technologies; Wiley: Hoboken, NJ, USA, 2011; pp. 1–15. [Google Scholar]
- Mohamed, M.A.; Abo-El-Seoud, M.S.; Abd-El-Atty, H.M. Performance simulation of IEEE 802.16e WiMAX physical layer. In Proceedings of the 2010 2nd IEEE International Conference on Information Management and Engineering, Chengdu, China, 16–18 April 2010; pp. 661–668. [Google Scholar] [CrossRef]
- Matin, M.A.; Alam, S.; Islam, M.A.; Haque, A.L. Performance analysis of the IEEE 802.16–2004 256-point FFT OFDM physical layer. In Proceedings of the 2009 5th IEEE GCC Conference Exhibition, Kuwait City, Kuwait, 17–19 March 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Kas, M.; Yargicoglu, B.; Korpeoglu, I.; Karasan, E. A Survey on Scheduling in IEEE 802.16 Mesh Mode. IEEE Commun. Surv. Tutor. 2010, 12, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Rohde & Schwarz. WiMAX: General Information about the Standard 802.16; Application Note; Rohde & Schwarz: Munich, Germany, 2006; Available online: https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma96/1MA96_0E_WiMAX.pdf (accessed on 28 July 2021).
- Calabrese, M. Broadcast to Broadband: Unlicensed Access to Unused TV Channels? IEEE Internet Comput. 2008, 12, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Gao, L.; Huang, J. Business modeling for TV white space networks. IEEE Commun. Mag. 2015, 53, 82–88. [Google Scholar] [CrossRef]
- Edwards, W.; Gebauer, J.; Reinicke, B. White Space Networks: Architecture, Application, and Opportunity. Computer 2014, 47, 64–71. [Google Scholar] [CrossRef]
- Zaeri-Amirani, M.; Afghah, F.; Zeadally, S. A Hierarchical Spectrum Access Scheme for TV White Space Coexistence in Heterogeneous Networks. IEEE Access 2018, 6, 78992–79004. [Google Scholar] [CrossRef]
- Elliot, R.A.; Enderwitz, M.A.; Thompson, K.; Crockett, L.H.; Weiss, S.; Stewart, R.W. Wideband TV White Space Transceiver Design and Implementation. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, G.; Zheng, Y.; Xie, L.; Yeo, C.K. Energy Efficiency Consideration for Indoor Femtocell Networks in TV White Spaces. IEEE Access 2018, 6, 1565–1576. [Google Scholar] [CrossRef]
- Filin, S.; Baykas, T.; Harada, H.; Kojima, F.; Yano, H. IEEE Standard 802.19.1 for TV white space coexistence. IEEE Commun. Mag. 2016, 54, 22–26. [Google Scholar] [CrossRef]
- Elkhodr, M. Enabling Technologies and Architectures for Next-Generation Networking Capabilities; Advances in Wireless Technologies and Telecommunication (2327-3305); IGI Global: Hershey PA, USA, 2018. [Google Scholar]
- Du, K.; Swamy, M. Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Liberg, O.; Sundberg, M.; Wang, E.; Bergman, J.; Sachs, J. Cellular Internet of Things: Technologies, Standards, and Performance; Academic Press: London, UK, 2017. [Google Scholar]
- Penttinen, J. 5G Explained: Security and Deployment of Advanced Mobile Communications; Wiley& Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Seo, D. Evolution and Standardization of Mobile Communications Technology; Advances in IT Standards and Standardization Research (1935-3391); IGI Global: Hershey, PA, USA, 2013. [Google Scholar]
- Hu, F. Opportunities in 5G Networks: A Research and Development Perspective; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Mantri, A.; Nandi, S.; Kumar, G.; Kumar, S. High Performance Architecture and Grid Computing: International Conference, HPAGC 2011, Chandigarh, India, 19–20 July 2011; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Penttinen, J.T.J. The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems, 1st ed.; John Wiley & Sons Ltd.: Chichester, UK, 2015. [Google Scholar]
- Johnson Controls. Sunrise: Securing the Future with LTE; Technical Paper; Johnson Controls: Milwaukee, WI, USA, 2018; Available online: http://www.dsc.com/lte/media/documents/LTE-whitepaper.pdf (accessed on 28 July 2021).
- Parsons, J. Mobile Communication Systems; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Wakefield, T.; McNally, D.; Bowler, D.; Mayne, A. Introduction to Mobile Communications: Technology, Services, Market; Auerbach Publishers, Incorporated: Boca Raton, FL, USA, 2019. [Google Scholar]
- Palanivelu, T.; Nakkeeran, R. Wireless and Mobile Communication; PHI Learning: Delhi, India, 2008. [Google Scholar]
- Molisch, A.F. Wireless Communications, 2nd ed.; Wiley-IEEE Press: Chichester, UK, 2011. [Google Scholar]
- Obaidat, M.; Zarai, F.; Nicopolitidis, P. Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications; Elsevier Science: Waltham, MA, USA, 2015. [Google Scholar]
- Katti, R.; Prince, S. A survey on role of photonic technologies in 5G communication systems. Photonic Netw. Commun. 2019, 38, 185–205. [Google Scholar] [CrossRef]
- ETSI. Mobile Communications; Technical Paper; ETSI: Sophia Antipolis, France, 2018; Available online: https://www.etsi.org/technologies/mobile/ (accessed on 28 July 2021).
- Rohde & Schwarz. High Speed Uplink Packet Access (HSUPA); White Paper: Application Note 1MA94; Rohde & Schwarz: Munich, Germany, 2006; Available online: https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma94/1MA94_1e_HSUPA.pdf (accessed on 12 August 2021).
- Rohde & Schwarz. HSDPA & HSUPA Challenges for UE Power Amplifier Design; White Paper: Application note 1MA84; Rohde & Schwarz: Munich, Germany, 2011; Available online: https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma84/1MA84_2e_HSDPA.pdf (accessed on 12 August 2021).
- Rohde & Schwarz. WCDMA / HSPA / HSPA+ Technology; Technical Paper; Rohde & Schwarz: Munich, Germany, 2011; Available online: https://www.rohde-schwarz.com/pt/technologies/cellular/wcdma-hspa/wcdma-hspa-hspaplus-technology/wcdma-hspa-hspaplus_55946.html (accessed on 12 August 2021).
- Rohde & Schwarz. HSPA+ Technology Introduction; White Paper: Application Note 1MA205; Rohde & Schwarz: Munich, Germany, 2012; Available online: https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma205/1MA205_2E_HSPA_technology.pdf (accessed on 12 August 2021).
- Rao, A.M.; Weber, A.; Gollamudi, S.; Soni, R. LTE and HSPA+: Revolutionary and evolutionary solutions for global mobile broadband. Bell Labs Tech. J. 2009, 13, 7–34. [Google Scholar] [CrossRef]
- Qualcomm Incorporated. EV-DO Rev. A and B: Wireless Broadband for the Masses; White Paper; Qualcomm Incorporated: San Diego, CA, USA, 2007; Available online: https://www.qualcomm.com/documents/ev-do-rev-and-b-wireless-broadband-masses-whitepaper (accessed on 12 June 2021).
- Verizon Wireless. 1xEV-DO Rev. A Technology; White Paper; Verizon Wireless: New York, NY, USA, 2009; Available online: https://scache.vzw.com/dam/businessportal/content/assets/files/Rev_A_WP.pdf (accessed on 12 June 2021).
- Dahlman, E.; Parkvall, S.; Skold, J.; Beming, P. 3G Evolution: HSPA and LTE for Mobile Broadband; 3G Evolution; Academic Press: Oxford, MA, USA, 2010. [Google Scholar]
- Alimi, I.A.; Patel, R.K.; Zaouga, A.; Muga, N.J.; Pinto, A.N.; Teixeira, A.L.; Monteiro, P.P. 6G CloudNet: Towards a Distributed, Autonomous, and Federated AI-Enabled Cloud and Edge Computing. In 6G Mobile Wireless Networks; Wu, Y., Singh, S., Taleb, T., Roy, A., Dhillon, H.S., Kanagarathinam, M.R., De, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 251–283. [Google Scholar] [CrossRef]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A Survey on Green 6G Network: Architecture and Technologies. IEEE Access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Alimi, I.A.; Muga, N.J.; Abdalla, A.M.; Pinho, C.; Rodriguez, J.; Monteiro, P.P.; Teixeira, A.L. Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond. In Optical and Wireless Convergence for 5G Networks; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; Chapter 1; pp. 1–29. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Y.; Niyato, D. 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun. 2019, 16, 1–14. [Google Scholar] [CrossRef]
- Tomkos, I.; Klonidis, D.; Pikasis, E.; Theodoridis, S. Toward the 6G Network Era: Opportunities and Challenges. IT Prof. 2020, 22, 34–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2019, 34, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zong, B.; Fan, C.; Wang, X.; Duan, X.; Wang, B.; Wang, J. 6G Technologies: Key Drivers, Core Requirements, System Architectures, and Enabling Technologies. IEEE Veh. Technol. Mag. 2019, 14, 18–27. [Google Scholar] [CrossRef]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.A. The Roadmap to 6G: AI Empowered Wireless Networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G Networks: Use Cases and Technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, C.; Xu, S. 6G: Connecting Everything by 1000 Times Price Reduction. IEEE Open J. Veh. Technol. 2020, 1, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Tachikawa, K. A perspective on the evolution of mobile communications. IEEE Commun. Mag. 2003, 41, 66–73. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G Wireless Communications: Vision and Potential Techniques. IEEE Netw. 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Calvanese Strinati, E.; Barbarossa, S.; Gonzalez-Jimenez, J.L.; Ktenas, D.; Cassiau, N.; Maret, L.; Dehos, C. 6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE Veh. Technol. Mag. 2019, 14, 42–50. [Google Scholar] [CrossRef]
- Al-Eryani, Y.; Hossain, E. The D-OMA Method for Massive Multiple Access in 6G: Performance, Security, and Challenges. IEEE Veh. Technol. Mag. 2019, 14, 92–99. [Google Scholar] [CrossRef]
- European Commission. Broadband: Technology Comparison; Policy; European Commission: Brussels, Belgium, 2019; Available online: https://digital-strategy.ec.europa.eu/en/policies/broadband-technology-comparison (accessed on 12 August 2021).
- European Commission. Comparison of Wired and Wireless Broadband Technologies; Technical White Paper; European Commission: Brussels, Belgium, 2018; Available online: https://ec.europa.eu/information_society/newsroom/image/document/2018-17/comparison_of_broadband_technologies_table_75B12AE2-FC37-D44B-C75B5885D383A0FE_51503.pdf (accessed on 12 August 2021).
- European Commission. Broadband: Technology Overview; Policy; European Commission: Brussels, Belgium, 2019; Available online: https://digital-strategy.ec.europa.eu/en/policies/broadband-technology-overview (accessed on 12 August 2021).
- Gokhale, A. Introduction to Telecommunications; Cengage Learning: Boston, MA, USA, 2004. [Google Scholar]
- Olenewa, J. Guide to Wireless Communications; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- CommScope. CommScope Enters Fixed Wireless Market with Open Interface, Integrated Antenna Solution; Press Release; CommScope: Hickory, NC, USA, 2018; Available online: https://www.commscope.com/press-releases/2018/commscope-enters-fixed-wireless-market-with-open-interface-integrated-antenna-solution/ (accessed on 12 August 2021).
- Bisdounis, L. Efficient baseband modem physical implementation for fixed broadband wireless access networks. In Proceedings of the 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 12–14 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Xie, W.; Mao, N.; Rundberget, K. Cost Comparisons of Backhaul Transport Technologies for 5G Fixed Wireless Access. In Proceedings of the 2018 IEEE 5G World Forum (5GWF), Silicon Valley, CA, USA, 9–11 July 2018; pp. 159–163. [Google Scholar] [CrossRef]
- Olofsson, H.; Ericsson, A.; Kronestedt, F.; Hellsten, S. Fixed Wireless Access IN LTE and 5G; Technology Review; Ericsson: Stockholm, Sweden, 2018; Available online: https://www.slideshare.net/Ericsson/ericsson-technology-review-leveraging-lte-and-5g-nr-networks-for-fixed-wireless-access (accessed on 12 June 2021).
- Olofsson, H.; Ericsson, A.; Kronestedt, F.; Hellsten, S. Leveraging LTE and 5G NR Networks for Fixed Wireless Access; Technology Review; Ericsson: Stockholm, Sweden, 2018; Volume 97, Available online: https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/leveraging-lte-and-5g-nr-networks-for-fixed-wireless-access (accessed on 12 June 2021).
- Mun, K. CBRS: New Shared Spectrum Enables Flexible Indoor and Outdoor Mobile Solutions and New Business Models; CBRS White Paper; Mobile Experts: Silicon Valley, CA, USA, 2017; Available online: https://www.federatedwireless.com/wp-content/uploads/2017/09/Mobile-Experts-CBRS-Overview.pdf (accessed on 12 June 2021).
- Huawei. 4G/5G FWA—Wireless Fiber; White Paper; Huawei: Shenzhen, China, 2018; Available online: https://www-file.huawei.com/-/media/corporate/pdf/white%20paper/2019/huawei_wttx_4g_5g_fwa_broadband_industry_white_paper.pdf?la=en (accessed on 12 June 2021).
- NetcrackerTech. 5G Business Cases: A Look at Fixed Wireless Access; Technical Report; NetcrackerTech: Waltham, MA, USA, 2018; Available online: https://www.netcracker.com/blog/view-all/5g-business-cases-a-look-at-fixed-wireless-access.html (accessed on 28 July 2021).
- Digital Catapult. 5G Nation: The UK 5G Ecosystem 2018; Technical Report; Digital Catapult: London, UK, 2018; Available online: https://assets.ctfassets.net/nubxhjiwc091/2aeGqlM3q4m4WW48y6gkOm/d4dba6029fead7538f246ff81b0a5be6/DC_5gMapping_FinalforWeb_Single.pdf (accessed on 28 July 2021).
- GSMA. 5G Spectrum: GSMA Public Policy Position; Report; GSMA: London, UK, 2021; Available online: https://www.gsma.com/spectrum/wp-content/uploads/2021/04/5G-Spectrum-Positions.pdf (accessed on 12 April 2021).
- Mundy, J. What is 5G Fixed Wireless Access (FWA)? Article/Press Release, 5G.co.uk: Newport, UK, 2018; Available online: https://5g.co.uk/guides/what-is-5g-fixed-wireless-access-fwa/ (accessed on 12 April 2021).
- Alimi, I.A.; Popoola, J.J.; Akingbade, K.F.; Kolawole, M.O. Performance Analysis of Bit-Error-Rate and Channel Capacity of MIMO Communication Systems over Multipath Fading Channels. Int. J. Informatics Commun. Technol. (IJ-ICT) 2013, 2, 57–63. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, G.; Wang, T. Investigation of MIMO Channel Correlation and Capacity in Curved Subway Tunnel. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1698–1702. [Google Scholar] [CrossRef]
- Alimi, I.; Patel, R.; Muga, N.; Monteiro, P. Performance Analysis of 5G Fixed Wireless Access Networks with Antenna Diversity Techniques. Wirel. Pers. Commun. 2020, 113, 1–25. [Google Scholar] [CrossRef]
- Ericsson. Fixed Wireless Access handbook; Extracted Version, EN/LZT 2/28701-FGD 101 449 Uen Rev D; Ericsson: Stockholm, Sweden, 2019; Available online: http://www.editionmultimedia.fr/wp-content/uploads/2019/09/Ericsson-FWA-handbook-june-2019.pdf (accessed on 12 April 2021).
- Abecassis, D.; Nickerson, C.; Stewart, J. Global Race to 5G- Spectrum and Infrastructure Plans and Priorities; Ref: 2012033-101; Analysys Mason: London, UK, 2018. Available online: https://ecfsapi.fcc.gov/file/10417556600122/Analysys%20Mason%20Global%20Race%20To%205G%20Report.pdf (accessed on 12 April 2021).
- Ntagkounakis, K.; Dallas, P.; Sharif, B.; Kalantzis, E. A rotated-interleaved channel assignment scheme in adaptive TDD fixed-broadband wireless access. In Proceedings of the 2005 IEEE International Conference on Personal Wireless Communications, New Delhi, India, 23–25 January 2005; pp. 460–464. [Google Scholar] [CrossRef]
- Takahashi, N.; Ueno, S.; Ohmoto, R. Using space diversity against attenuation through vegetation: A field study for quasi-mm wave band fixed wireless access systems. In Proceedings of the 2005 Asia-Pacific Microwave Conference Proceedings, Suzhou, China, 4–7 December 2005; Volume 4, p. 4. [Google Scholar] [CrossRef]
- Iiyama, N.; Shiba, H.; Kimura, H.; Hadama, H. Long-Term Cost-Effective Access Network for Fixed Mobile Convergence; OECC 2010 Technical Digest; IEEE: Piscataway Township, NJ, USA, 2010; pp. 426–427. [Google Scholar]
- Iizuka, R. 5G from a Developed Market Perspective: What We Plan to Do; Presentation in Spectrum Futures 2017; Foundation for MultiMedia Communications (FMMC): Tokyo, Japan, 2017; Available online: http://1109wu1wibuvhcjukfcngz6g-wpengine.netdna-ssl.com/wp-content/uploads/2017/10/04-sf2017-5g-global-trend_rumi-iizuka.pdf (accessed on 23 May 2021).
- GSMA Intelligence. 5G Fixed Wireless: A Renewed Playbook; Technical Report; GSMA Intelligence: London, UK, 2021; Available online: https://assets.foleon.com/eu-west-2/uploads-7e3kk3/4816/5g_playbook.efdc80c74f0b.pdf (accessed on 23 May 2021).
- Ha, D.; Choi, D.; Kim, H.; Kum, J.; Lee, J.; Lee, Y. Passive repeater for removal of blind spot in NLOS path for 5G fixed wireless access (FWA) system. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 2049–2050. [Google Scholar] [CrossRef]
- Terragraph. Virtual Fiber for High-Speed Fixed Broadband. White Paper. 2018. Available online: https://terragraph.com/wp-content/uploads/2019/02/Terragraph_MikebudaTrial_Whitepaper.pdf (accessed on 23 May 2021).
- Deng, Q.; Li, Z.; Chen, J.; Zeng, F.; Wang, H.; Zhou, L.; Choi, Y. Dynamic Spectrum Sharing for Hybrid Access in OFDMA-Based Cognitive Femtocell Networks. IEEE Trans. Veh. Technol. 2018, 67, 10830–10840. [Google Scholar] [CrossRef]
- Hamdaoui, B.; Shin, K.G. OS-MAC: An Efficient MAC Protocol for Spectrum-Agile Wireless Networks. IEEE Trans. Mob. Comput. 2008, 7, 915–930. [Google Scholar] [CrossRef]
- Schnaufer, D. 5 Things to Consider When Designing Fixed Wireless Access (FWA) Systems; Article; Qorvo: Chandler, AZ, USA, 2018; Available online: https://www.qorvo.com/design-hub/blog/5-things-to-consider-when-designing-fixed-wireless-access-fwa-systems (accessed on 23 May 2021).
- Real Wireless Ltd. UK Operators Progress on 5G Business Cases; Technical Paper: V1.0; Real Wireless Ltd.: Pulborough, UK, 2018; Available online: https://uk5g.org/media/uploads/resource_files/UK5G_RW_article_1_UK_MNO_prog_on_5G_biz_case_v1.0.pdf (accessed on 23 May 2021).
- Hashemi, M.; Coldrey, M.; Johansson, M.; Petersson, S. Integrated Access and Backhaul in Fixed Wireless Access Systems. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Skidmore, G.J. Using Modeling and Simulation to Assess Challenges and Solutions for 5G Fixed Wireless Access. In Proceedings of the 2018 Electronic Design Innovation Conference, State College, PA, USA, 13–14 October 2018; pp. 1–9. [Google Scholar]
- Hurley, S.; Allen, S.; Ryan, D.; Taplin, R. Modelling and planning fixed wireless networks. Wirel. Netw. 2010, 16, 577–592. [Google Scholar] [CrossRef]
- Allen, S.M.; Hurley, S.; Taplin, R.K.; Whitaker, R.M. Automatic cell planning of broadband fixed wireless networks. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference (Cat. No.01CH37202), Rhodes, Greece, 6–9 May 2001; Volume 4, pp. 2808–2812. [Google Scholar] [CrossRef]
- Majedi, S.M.S.; Farzaneh, F. A new empirical-physical method for calculation of path loss for fixed wireless access in suburban areas. In Proceedings of the 2008 International Symposium on Telecommunications, Tehran, Iran, 27–28 August 2008; pp. 92–96. [Google Scholar] [CrossRef]
- ITU-R. Modelling and Simulation of IMT Networks and Systems for Use in Sharing and Compatibility Studies; M Series: Mobile, Radiodetermination, Amateur and Related Satellite Services—Recommendation ITU-R M.2101-0; ITU-R: Geneva, Switzerland, 2017. [Google Scholar]
- Suzuki, H. Actual and predicted coverage of multiuser MIMO based fixed wireless access in rural areas. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 19–23. [Google Scholar] [CrossRef]
- Cheffena, M.; Mohamed, M. Empirical Path Loss Models for Wireless Sensor Network Deployment in Snowy Environments. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2877–2880. [Google Scholar] [CrossRef] [Green Version]
- Samimi, M.K.; Rappaport, T.S.; MacCartney, G.R. Probabilistic Omnidirectional Path Loss Models for Millimeter-Wave Outdoor Communications. IEEE Wirel. Commun. Lett. 2015, 4, 357–360. [Google Scholar] [CrossRef]
- Sulyman, A.I.; Alwarafy, A.; MacCartney, G.R.; Rappaport, T.S.; Alsanie, A. Directional Radio Propagation Path Loss Models for Millimeter-Wave Wireless Networks in the 28-, 60-, and 73-GHz Bands. IEEE Trans. Wirel. Commun. 2016, 15, 6939–6947. [Google Scholar] [CrossRef]
- Katev, P.D. Propagation models for WiMAX at 3.5 GHz. In Proceedings of the 2012 ELEKTRO, Rajecke Teplice, Slovakia, 21–22 May 2012; pp. 61–65. [Google Scholar] [CrossRef]
- Sun, S.; Rappaport, T.S.; Thomas, T.A.; Ghosh, A.; Nguyen, H.C.; Kovács, I.Z.; Rodriguez, I.; Koymen, O.; Partyka, A. Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications. IEEE Trans. Veh. Technol. 2016, 65, 2843–2860. [Google Scholar] [CrossRef]
- Ding, G.; Clavero, C. Silver-Based Low-Emissivity Coating Technology for Energy- Saving Window Applications. In Modern Technologies for Creating the Thin-Film Systems and Coatings; Nikitenkov, N.N., Ed.; IntechOpen: Rijeka, Croatia, 2017; Chapter 20. [Google Scholar] [CrossRef] [Green Version]
- Rissman, J.; Kennan, H. Case Studies on the Government’s Role in Energy Technology Innovation: Low-Emissivity Windows; Technical Report; American Energy Innovation Council: Washington, DC, USA, 2013; Available online: https://bipartisanpolicy.org/download/?file=/wp-content/uploads/2013/03/Case-Low-e-Windows.pdf (accessed on 23 May 2021).
- Raytek. Low-E Glass: Monitoring of One-Side Coated Flat Glass; Application Note; Raytek: Shanghai, China, 2009; Available online: http://www.appliedmc.com/content/images/9250477_ENG_A_W.pdf (accessed on 23 May 2021).
- Vitro Architectural Glass. Understanding Low-E Coatings Application Note; Vitro Architectural Glass: Cheswick, PA, USA, 2018; Available online: https://www.bdcuniversity.com/sites/sgc-university/files/Vitro%20course%20-%20Understanding%20Low-E%20Coatings%20REVISED%2010.11.18.pdf (accessed on 23 May 2021).
- Giovannetti, F.; Föste, S.; Ehrmann, N.; Rockendorf, G. High transmittance, low emissivity glass covers for flat plate collectors: Applications and performance. Sol. Energy 2014, 104, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. Electronically Enhanced Office Buildings; The National Academies Press: Washington, DC, USA, 1988. [Google Scholar] [CrossRef]
- Wang, L.; Hanzo, L. The Amplify-and-Forward Cooperative Uplink Using Multiple-Symbol Differential Sphere-Detection. IEEE Signal Process. Lett. 2009, 16, 913–916. [Google Scholar] [CrossRef] [Green Version]
- Draper, S.C.; Liu, L.; Molisch, A.F.; Yedidia, J.S. Cooperative Transmission for Wireless Networks Using Mutual-Information Accumulation. IEEE Trans. Inf. Theory 2011, 57, 5151–5162. [Google Scholar] [CrossRef]
- Paredes, J.M.; Khalaj, B.H.; Gershman, A.B. Cooperative Transmission for Wireless Relay Networks Using Low-Rate Feedback. CoRR 2009, 58, 7. [Google Scholar]
- Gharavi, H.; Hu, B. Cooperative diversity routing and transmission for wireless sensor networks. IET Wirel. Sens. Syst. 2013, 3, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Zhan, C.; Yao, G. Cooperative Transmission in Small Cell Networks Using Network Coding. IEEE Wirel. Commun. Lett. 2018, 7, 510–513. [Google Scholar] [CrossRef]
- Zandian, R.; Witkowski, U. Non-line of Sight Error Mitigation in Bayesian Differential Localization Systems. In Proceedings of the 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 25–26 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- ITU-R. Effects of Building Materials and Structures on Radiowave Propagation above about 100 MHz; P Series: Radiowave Propagation–Recommendation ITU-R P.2040-2; ITU-R: Geneva, Switzerland, 2021; Available online: https://www.itu.int/rec/R-REC-P.2040/en (accessed on 1 October 2021).
- Meng, Y.S.; Lee, Y.H. Investigations of Foliage Effect on Modern Wireless Communication Systems: A Review. Prog. Electromagn. Res. 2010, 105, 313–332. [Google Scholar] [CrossRef] [Green Version]
- Goldhirsh, J.; Vogel, W.J. Handbook of Propagation Effects for Vehicular and Personal Mobile Satellite Systems: Overview of Experimental and Modeling Results; Technical Report; The Johns Hopkins University and University of Texas at Austin: Laurel, MD, USA, 1998. [Google Scholar]
- ITU-R. Attenuation in Vegetation; P Series: Radiowave Propagation–Recommendation ITU-R P.833-9; ITU-R: Geneva, Switzerland, 2021; Available online: https://www.itu.int/rec/R-REC-P.833/en (accessed on 1 October 2021).
- Downey, M. Effects of Trees and Foliage on the Propagation of UHF Satellite Signals; Report No. 77017; Royal Signals and Radar Establishment: Christchurch, UK, 1977. [Google Scholar]
- Bernard, R.; Frezal, M.; Vidal-Madjar, D.; Guyon, D.; Riom, J. Nadir looking airborne radar and possible applications to forestry. Remote Sens. Environ. 1987, 21, 297–309. [Google Scholar] [CrossRef]
- Nashashibi, A.Y.; Sarabandi, K.; Oveisgharan, S.; Dobson, M.C.; Walker, W.S.; Burke, E. Millimeter-wave measurements of foliage attenuation and ground reflectivity of tree stands at nadir incidence. IEEE Trans. Antennas Propag. 2004, 52, 1211–1222. [Google Scholar] [CrossRef]
- Palacin, J.; Palleja, T.; Tresanchez, M.; Sanz, R.; Llorens, J.; Ribes-Dasi, M.; Masip, J.; Arno, J.; Escola, A.; Rosell, J.R. Real-Time Tree-Foliage Surface Estimation Using a Ground Laser Scanner. IEEE Trans. Instrum. Meas. 2007, 56, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.; Yan, F.; Sharf, A.; Deussen, O.; Huang, H.; Chen, B. Tree Modeling with Real Tree-Parts Examples. IEEE Trans. Vis. Comput. Graph. 2016, 22, 2608–2618. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Tang, L.; Wang, Y.; You, X. An upper bound on the SER of transmit beamforming in correlated rayleigh fading. IEEE Trans. Commun. 2010, 58, 457–462. [Google Scholar] [CrossRef]
- Liu, L.; Jafarkhani, H. Novel Transmit Beamforming Schemes for Time-Selective Fading Multiantenna Systems. IEEE Trans. Signal Process. 2006, 54, 4767–4781. [Google Scholar] [CrossRef]
- Wei, L.; Hu, R.Q.; Qian, Y.; Wu, G. Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 2014, 21, 136–143. [Google Scholar] [CrossRef]
- Degli-Esposti, V.; Fuschini, F.; Vitucci, E.M.; Barbiroli, M.; Zoli, M.; Tian, L.; Yin, X.; Dupleich, D.A.; Müller, R.; Schneider, C.; et al. Ray-Tracing-Based mm-Wave Beamforming Assessment. IEEE Access 2014, 2, 1314–1325. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, J.Y.; Yu, W.M.; Cui, T.J. Time-Domain Shooting and Bouncing Rays Method Based on Beam Tracing Technique. IEEE Trans. Antennas Propag. 2015, 63, 4037–4048. [Google Scholar] [CrossRef]
- Lee, J.; Choi, J.; Lee, J.; Kim, S. 28 GHz Millimeter-Wave Channel Models in Urban Microcell Environment Using Three-Dimensional Ray Tracing. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 426–429. [Google Scholar] [CrossRef]
- Leonor, N.R.; Sánchez, M.G.; Fernandes, T.R.; Caldeirinha, R.F.S. A 2D Ray-Tracing Based Model for Wave Propagation Through Forests at Micro-and Millimeter Wave Frequencies. IEEE Access 2018, 6, 32097–32108. [Google Scholar] [CrossRef]
- Xu, H.; Aliakbarian, H.; der Westhuizen, E.V.; Wolhuter, R.; Vandenbosch, G.A.E. An Architectural Scheme for Real-Time Multiple Users Beam Tracking Systems. IEEE Syst. J. 2017, 11, 2905–2916. [Google Scholar] [CrossRef]
- Zarb-Adami, K.; Faulkner, A.; de Vaate, J.G.B.; Kant, G.W.; Picard, P. Beamforming techniques for large-N aperture arrays. In Proceedings of the 2010 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, USA, 12–15 October 2010; pp. 883–890. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Hammi, O.; Ghannouchi, F.M. Design Optimization and DPD Linearization of GaN-Based Unsymmetrical Doherty Power Amplifiers for 3G Multicarrier Applications. IEEE Trans. Microw. Theory Tech. 2009, 57, 2105–2113. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, B. Fully-Integrated Two-Stage GaN MMIC Doherty Power Amplifier for LTE Small Cells. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 918–920. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, X.; Zhang, L.; Zhai, J.; Sun, Y. High-Efficiency GaN Doherty Power Amplifier for 100-MHz LTE-Advanced Application Based on Modified Load Modulation Network. IEEE Trans. Microw. Theory Tech. 2013, 61, 2911–2921. [Google Scholar] [CrossRef]
- Braithwaite, R.N.; Carichner, S. An Improved Doherty Amplifier Using Cascaded Digital Predistortion and Digital Gate Voltage Enhancement. IEEE Trans. Microw. Theory Tech. 2009, 57, 3118–3126. [Google Scholar] [CrossRef]
- Hammi, O.; Carichner, S.; Vassilakis, B.; Ghannouchi, F.M. Synergetic Crest Factor Reduction and Baseband Digital Predistortion for Adaptive 3G Doherty Power Amplifier Linearizer Design. IEEE Trans. Microw. Theory Tech. 2008, 56, 2602–2608. [Google Scholar] [CrossRef]
- Gustafsson, D.; Cahuana, J.C.; Kuylenstierna, D.; Angelov, I.; Fager, C. A GaN MMIC Modified Doherty PA With Large Bandwidth and Reconfigurable Efficiency. IEEE Trans. Microw. Theory Tech. 2014, 62, 3006–3016. [Google Scholar] [CrossRef]
- Ahmed, I.; Khammari, H.; Shahid, A.; Musa, A.; Kim, K.S.; De Poorter, E.; Moerman, I. A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 3060–3097. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Chih-Lin, I.; Xu, Z.; Rowell, C. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 2015, 53, 186–194. [Google Scholar] [CrossRef]
- Lin, Y. Hybrid MIMO-OFDM Beamforming for Wideband mmWave Channels Without Instantaneous Feedback. IEEE Trans. Signal Process. 2018, 66, 5142–5151. [Google Scholar] [CrossRef]
- Han, S.; Chih-Lin, I.; Xu, Z.; Wang, S. Reference Signals Design for Hybrid Analog and Digital Beamforming. IEEE Commun. Lett. 2014, 18, 1191–1193. [Google Scholar] [CrossRef]
- Li, J.; Xiao, L.; Xu, X.; Zhou, S. Robust and Low Complexity Hybrid Beamforming for Uplink Multiuser MmWave MIMO Systems. IEEE Commun. Lett. 2016, 20, 1140–1143. [Google Scholar] [CrossRef]
- Sohrabi, F.; Yu, W. Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE J. Sel. Top. Signal Process. 2016, 10, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Li, B.; Liang, P. A Novel Hybrid Beamforming Algorithm with Unified Analog Beamforming by Subspace Construction Based on Partial CSI for Massive MIMO-OFDM Systems. IEEE Trans. Commun. 2017, 65, 594–607. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Valenzuela, R.A. How Much Spectrum is too Much in Millimeter Wave Wireless Access. IEEE J. Sel. Areas Commun. 2017, 35, 1444–1458. [Google Scholar] [CrossRef]
- Ha, M.; Murray, P.; Prime, J. Recent FCC Rulemakings Panel. In Proceedings of the 2018 Telecommunication Certification Body (TCB) Workshop, Baltimore, MD, USA, 10–12 April 2018. [Google Scholar]
- FCC. FCC Fact Sheet*: Use of Spectrum Bands above 24 GHz for Mobile Radio Services; FCC-CIRC1711-02; FCC: Washington, DC, USA, 2017.
- Qorvo. 5G Semiconductor Solutions—Infrastructure and Fixed Wireless Access; e-book; Qorvo: Chandler, AZ, USA, 2018; Available online: https://www.qorvo.com/search?key=5G+Semiconductor+Solutions&mode=1&search-value=1 (accessed on 23 July 2021).
- Frecassetti, M.G.L.; Backemo, B.; Gentina, D.; Ferrari, G.; Edstam, J.; Yigal, L.; Zein, N.; Nava, P.; Volpato, P.; Macchi, R.; et al. E-Band and V-Band—Survey on Status of Worldwide Regulation; Etsi white paper no. 9; ETSI: Sophia Antipolis, France, 2015; Available online: https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp9_e_band_and_v_band_survey_20150629.pdf (accessed on 23 July 2021).
- Ofcom. Spectrum Co-Existence Document: Spectrum Access 28 GHz; Document; Ofcom: Warrington, UK, 2018; Available online: https://www.ofcom.org.uk/__data/assets/pdf_file/0032/84776/28ghz_codoc.pdf (accessed on 23 July 2021).
- Real-Wireless. Future Use Cases for Mobile Telecoms in the UK; Technical Report for National Infrastructure Commission, Version: 1.00; Real Wireless: Pulborough, UK, 2016. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/581437/Real_Wireless_Future_Use_Cases_for_Mobile_UK.pdf (accessed on 23 July 2021).
- Broadband Commission. The Broadband Challenge; Presentation; Broadband Commission: Geneva, Switzerland, 2011; Available online: http://www.ddwei.info/pdf/Broadband/3.pdf (accessed on 12 May 2021).
- Morris, I. Orange Romania Weighs Fixed 5G for Broadband Expansion; Article/Press Release; Light Reading: New York, NY, USA, 2018; Available online: https://www.lightreading.com/mobile/5g/orange-romania-weighs-fixed-5g-for-broadband-expansion/d/d-id/744387 (accessed on 12 May 2021).
- AT&T. AT&T Launches First 5G Business Customer Trial with Intel and Ericsson; Article/Press Release; AT&T: Dallas, TX, USA, 2016; Available online: https://about.att.com/story/att_launches_first_5g_business_customer_trial_with_intel_and_ericsson.html (accessed on 12 May 2021).
- Nokia. Nokia and AT&T First to Successfully Conduct 5G Streaming Tests with DIRECTV NOW over 39 GHz #MWC17; Article/Press Release; Nokia: Plano, TX, USA, 2017; Available online: https://www.nokia.com/about-us/news/releases/2017/02/22/nokia-and-att-first-to-successfully-conduct-5g-streaming-tests-with-directv-now-over-39-ghz-mwc17/ (accessed on 18 June 2021).
- Fuetsch, A. Accelerating 5G: Faster Timeline Means First Standardized Mobile 5G Services Coming as Soon as Late 2018; Article/Press Release; AT&T: Dallas, TX, USA, 2017; Available online: https://about.att.com/innovationblog/standardized_5g (accessed on 18 June 2021).
- Fenwick, S. Arqiva and Samsung Start 5G Fixed Wireless Access Trial in London; Article/Press Release; Land Mobile: London, UK, 2017; Available online: http://www.landmobile.co.uk/news/arqiva-and-samsung-start-5g-fixed-wireless-access-trial-in-london/ (accessed on 18 June 2021).
- TechUK. 5G: New Services New Customers New Challenges; Technical Report; TechUK: London, UK, 2017. [Google Scholar]
- Mundy, J. 5G Fixed Wireless Access Trial Now Live in the 28 GHz Band in Central London; Article/Press Release; 5GUK Limited: Newport, UK, 2017; Available online: https://5g.co.uk/news/samsung-and-arqiva-5g-fwa-trial-live/4190/ (accessed on 12 May 2021).
- Pujol, F.; Manero, C.; Ropert, S.; Enjalbal, A.; Lavender, T.; Jervis, V.; Rudd, R.; Marcus, J.S. Study on using millimetre waves bands for the deployment of the 5G ecosystem in the Union to Undertake First 5G Fixed Wireless Access Trial in the UK; Final Report; European Commission: Luxembourg, 2019; Available online: https://www.bruegel.org/wp-content/uploads/2019/10/KK0319410ENN.en_.pdf (accessed on 18 June 2021).
- Samsung. Arqiva and Samsung Kick off UK’s First 5G Fixed Wireless Access Trial; Article/Press Release; Samsung: Glendale, CA, USA, 2017; Available online: https://news.samsung.com/global/arqiva-and-samsung-kick-off-uks-first-5g-fixed-wireless-access-trial (accessed on 18 June 2021).
- Daniels, G. Arqiva Buys More 28GHz Spectrum in UK as It Prepares for 5G FWA; Article/Press Release; TelecomTV: London, UK, 2017; Available online: https://www.telecomtv.com/content/5g/arqiva-buys-more-28ghz-spectrum-in-uk-as-it-prepares-for-5g-fwa-15775/ (accessed on 18 June 2021).
- Varettoni, B. Verizon to Launch 5G Residential Broadband Services in up to 5 Markets in 2018; Article/Press Release; Verizon: New York, NY, USA, 2017; Available online: https://www.verizon.com/about/news/verizon-launch-5g-residential-broadband-services-5-markets-2018 (accessed on 23 May 2021).
- Business Insider. AT&T Launches 5G Trial with Magnolia at the Silos; Article/Press Release; Business Insider: New York, NY, USA, 2017; Available online: https://markets.businessinsider.com/news/stocks/at-t-launches-5g-trial-with-magnolia-at-the-silos-1011617642 (accessed on 23 May 2021).
- Qualcomm. Verizon, Qualcomm and Novatel Wireless Announce Collaboration to Expedite Trials and Wide-scale Commercial Deployment of 5G NR mmWave Technology; Article/Press Release; Qualcomm: San Diego, CA, USA, 2017; Available online: https://www.qualcomm.com/news/releases/2017/10/17/verizon-qualcomm-and-novatel-wireless-announce-collaboration-expedite (accessed on 23 May 2021).
- Huawei Technologies. Huawei Launches First Urban 5G “Wireless to the Home” CPE Trial in North America; Article/Press Release; Huawei Technologies: Shenzhen, China, 2018; Available online: https://www.huawei.com/en/news/2018/2/first-urban-5G-Wireless-Home-CPE-trial (accessed on 23 May 2021).
- Marcham, A. Understanding Fixed Wireless Access: What Is Fixed Wireless Access? Report; Network Architecture: Phoenix, AZ, USA, 2020; Available online: http://networkarchitecture2020.com/wp-content/uploads/2017/03/What-Is-Fixed-Wireless-Access-eBook-v4.pdf (accessed on 23 May 2021).
- T-Mobile. T-Mobile Building Out 5G in 30 Cities This Year …and That’s Just the Start; Article/Press Release; T-Mobile: Albuquerque, NM, USA, 2018; Available online: https://www.t-mobile.com/news/press/mwc-2018-5g (accessed on 19 August 2021).
- Dano, M. T-Mobile Quietly Confirms 5G Network in 30 Cities; Article/Press Release; Light Reading: New York, NY, USA, 2019; Available online: https://www.lightreading.com/mobile/5g/t-mobile-quietly-confirms-5g-network-in-30-cities/d/d-id/748791 (accessed on 12 May 2021).
- Kinney, S. T-Mobile US CEO: Building 5G in 30 Cities this Year, Nationwide in 2020; Article/Press Release; RCR Wireless: Austin, TX, USA, 2018; Available online: https://www.rcrwireless.com/20180802/carriers/t-mobile-us-5g-tag17 (accessed on 12 May 2021).
- Light Reading. Orange, Cisco, Samsung Test 5G FWA in Romania; Article/Press Release; Light Reading: New York, NY, USA, 2018; Available online: https://www.lightreading.com/mobile/5g/orange-cisco-samsung-test-5g-fwa-in-romania/d/d-id/744355 (accessed on 12 May 2021).
- Dyer, K. Orange 5G FWA Trial Hits Tech Targets—Now for the Business Case; Article/Press Release; The Mobile Network: London, UK, 2018; Available online: https://the-mobile-network.com/2018/07/orange-5g-fwa-trial-hits-tech-targets-but-leaves-business-case-questions-unanswered/ (accessed on 12 May 2021).
- Chen, P.; Liu, Z.; Qiao, X.; Tian, X. The parallel algorithm of Clique and it’s application on Data Mining Grid system. In Proceedings of the 2009 IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 6–8 November 2009; pp. 340–343. [Google Scholar] [CrossRef]
- Jiang, F.; Leung, C.K.; Pazdor, A.G.M. Big data mining of social networks for friend recommendation. In Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), San Francisco, CA, USA, 18–21 August 2016; pp. 921–922. [Google Scholar] [CrossRef]
- Papadopoulos, S.; Drosou, A.; Kalamaras, I.; Tzovaras, D. Behavioural Network Traffic Analytics for Securing 5G Networks. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, D.; Wei, X.; Dong, Z. Seeing Isn’t Believing: QoE Evaluation for Privacy-Aware Users. IEEE J. Sel. Areas Commun. 2019, 37, 1656–1665. [Google Scholar] [CrossRef]
- Tsolkas, D.; Liotou, E.; Passas, N.; Merakos, L. A survey on parametric QoE estimation for popular services. J. Netw. Comput. Appl. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, A. Network Traffic Type-Based Quality of Experience (QoE) Assessment for Universal Services. Appl. Sci. 2019, 9, 4107. [Google Scholar] [CrossRef] [Green Version]
- Goran, N.; Hadžialić, M. Mathematical Bottom-to-Up Approach in Video Quality Estimation Based on PHY and MAC Parameters. IEEE Access 2017, 5, 25657–25670. [Google Scholar] [CrossRef]
- Akhtar, Z.; Siddique, K.; Rattani, A.; Lutfi, S.L.; Falk, T.H. Why is Multimedia Quality of Experience Assessment a Challenging Problem? IEEE Access 2019, 7, 117897–117915. [Google Scholar] [CrossRef]
- ITU-T. Multimedia Quality of Service and Performance—Generic and User-Related Aspects: Opinion Model for Video-Telephony Applications; Series G: Transmission Systems and Media, Digital Systems and Networks, G.1070; ITU-T: Geneva, Switzerland, 2018; Available online: https://www.itu.int/rec/T-REC-G.1070-201806-I/en (accessed on 12 May 2021).
- Pinho, C.; Shahpari, A.; Alimi, I.; Lima, M.; Teixeira, A. Optical transforms and CGH for SDM systems. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Small Cell Forum. mmw 5G-eMBB Use Cases and Small Cell Based HyperDense Networks; Document, Version: 197.10.01; Small Cell Forum: Dursley, UK, 2017; Available online: https://scf.io/en/documents/197_-_mmw_5G-eMBB_use_cases_and_small_cell_based_HyperDense_networks.php (accessed on 12 May 2021).
- Torres-Ferrera, P.; Straullu, S.; Abrate, S.; Gaudino, R. Upstream and downstream analysis of an optical fronthaul system based on DSP-assisted channel aggregation. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, 1191–1201. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, J.; Ji, Y.; Tornatore, M. Energy-efficient dynamic lightpath adjustment in a decomposed AWGR-based passive WDM fronthaul. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 749–759. [Google Scholar] [CrossRef]
- ITU-T. Transport Network Support of IMT-2020/5G; Technical Report GSTR-TN5G; ITU-T: Geneva, Switzerland, 2018; Available online: https://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-HOME-2018-PDF-E.pdf (accessed on 12 May 2021).
- eCPRI. Common Public Radio Interface: Requirements for the eCPRI Transport Network; eCPRI Transport Network v1.0, Requirements Specification; eCPRI: Stockholm, Sweden, 2017; Available online: http://www.cpri.info/downloads/Requirements_for_the_eCPRI_Transport_Network_V1_0_2017_10_24.pdf (accessed on 25 July 2021).
- 5G PPP Architecture Working Group. View on 5G Architecture; Architecture White Paper Version 2.0. 2017. Available online: https://5g-ppp.eu/wp-content/uploads/2017/07/5G-PPP-5G-Architecture-White-Paper-2-Summer-2017_For-Public-Consultation.pdf (accessed on 25 July 2021).
- Pizzinat, A.; Chanclou, P.; Saliou, F.; Diallo, T. Things You Should Know About Fronthaul. J. Light. Technol. 2015, 33, 1077–1083. [Google Scholar] [CrossRef]
- Fuchuan, Z. Challenges and Trends for 5G Transport. ZTE Technol. 2018, 20, 19–21. [Google Scholar]
- Van, D.P.; Rimal, B.P.; Maier, M.; Valcarenghi, L. ECO-FiWi: An Energy Conservation Scheme for Integrated Fiber-Wireless Access Networks. IEEE Trans. Wirel. Commun. 2016, 15, 3979–3994. [Google Scholar] [CrossRef]
- Alimi, I.; Shahpari, A.; Ribeiro, V.; Kumar, N.; Monteiro, P.; Teixeira, A. Optical wireless communication for future broadband access networks. In Proceedings of the 2016 21st European Conference on Networks and Optical Communications (NOC), Lisbon, Portugal, 1–3 June 2016; pp. 124–128. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with MATLAB®; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Guiomar, F.P.; Alimi, I.A.; Monteiro, P.P.; Gameiro, A. Flexible Infrastructure for the Development and Integration of Access/Fronthauling Solutions in Future Wireless Systems. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Nokia. Nokia Optical Anyhaul as an Enabler of C-RAN: Accelerating the Delivery of 5G Networks; White Paper, Document Code: Sr1803022985en; Nokia: Espoo, Finland, 2018; Available online: https://onestore.nokia.com/asset/192782 (accessed on 25 July 2021).
- Alcatel-Lucent. Mobile Fronthaul for Cloud-Ran Deployment Efficient Use of Optical Infrastructure for Remote Radio Architectures; Application Note; Alcatel-Lucent: Boulogne-Billancourt, France, 2014; Available online: https://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/10051-mobile-fronthaul-cloud-ran-deployment.pdf (accessed on 25 July 2021).
- Kalfas, G.; Pleros, N.; Alonso, L.; Verikoukis, C. Network planning for 802.11ad and MT-MAC 60 GHz fiber-wireless gigabit wireless local area networks over passive optical networks. IEEE/OSA J. Opt. Commun. Netw. 2016, 8, 206–220. [Google Scholar] [CrossRef]
- Stephen, R.G.; Zhang, R. Joint Millimeter-Wave Fronthaul and OFDMA Resource Allocation in Ultra-Dense CRAN. IEEE Trans. Commun. 2017, 65, 1411–1423. [Google Scholar] [CrossRef] [Green Version]
- Kazaura, K.; Wakamori, K.; Matsumoto, M.; Higashino, T.; Tsukamoto, K.; Komaki, S. A Proposal for a Broadband Wireless Access Technology based on Radio-on-FSO Links. In Proceedings of the 2008 IEEE Globecom Workshops, New Orleans, LA, USA, 30 November–4 December 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y.; Cheng, J.; Hossain, M.J.; Leung, V.C.M. Fronthauling for 5G LTE-U Ultra Dense Cloud Small Cell Networks. IEEE Wirel. Commun. 2016, 23, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Yu, G.; Maaref, A.; Li, G.Y.; Huang, A. Rethinking Mobile Data Offloading for LTE in Unlicensed Spectrum. IEEE Trans. Wirel. Commun. 2016, 15, 4987–5000. [Google Scholar] [CrossRef]
- Qualcomm Technologies, Inc. Spectrum for 4G and 5G: Global Update on Spectrum for 4G & 5G; Technical Paper; Qualcomm Technologies, Inc.: San Diego, CA, USA, 2020; Available online: https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf (accessed on 18 March 2021).
- Aijaz, A.; Aghvami, H.; Amani, M. A survey on mobile data offloading: Technical and business perspectives. IEEE Wirel. Commun. 2013, 20, 104–112. [Google Scholar] [CrossRef]
- Breyne, L.; Torfs, G.; Yin, X.; Demeester, P.; Bauwelinck, J. Comparison between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber. IEEE Photonics Technol. Lett. 2017, 29, 1808–1811. [Google Scholar] [CrossRef] [Green Version]
- Thomas, V.A.; Ghafoor, S.; El-Hajjar, M.; Hanzo, L. A Full-Duplex Diversity-Assisted Hybrid Analogue/Digitized Radio Over Fibre for Optical/Wireless Integration. IEEE Commun. Lett. 2013, 17, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Dat, P.T.; Bekkali, A.; Kazaura, K.; Wakamori, K.; Matsumoto, M. A Universal Platform for Ubiquitous Wireless Communications Using Radio Over FSO System. J. Light. Technol. 2010, 28, 2258–2267. [Google Scholar] [CrossRef]
- Navidpour, S.M.; Uysal, M.; Kavehrad, M. BER Performance of Free-Space Optical Transmission with Spatial Diversity. IEEE Trans. Wirel. Commun. 2007, 6, 2813–2819. [Google Scholar] [CrossRef] [Green Version]
- Checko, A.; Christiansen, H.L.; Yan, Y.; Scolari, L.; Kardaras, G.; Berger, M.S.; Dittmann, L. Cloud RAN for Mobile Networks—A Technology Overview. IEEE Commun. Surv. Tutor. 2015, 17, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, J. Evolution Trends of 5G Microwave Backhaul Transmission. Available online: https://www.zte.com.cn/global/about/magazine/zte-technologies/2017/6/en_731/466193.html (accessed on 10 June 2021).
- Perrin, S. Evolving to an Open C-RAN Architecture for 5G; White Paper; Fujitsu: Richardson, TX, USA, 2017; Available online: https://www.fujitsu.com/us/Images/FNC-Fujitsu-Evolving-to-an-Open-C-RAN-Architecture-for-5G-White-Paper.pdf (accessed on 10 September 2021).
- Fujitsu. The Benefits of Cloud-RAN Architecture in Mobile Network Expansion; Technical Paper; Fujitsu: Richardson, TX, USA, 2014; Available online: https://www.fujitsu.com/downloads/TEL/fnc/whitepapers/CloudRANwp.pdf (accessed on 10 September 2021).
- Finisar. Optical MUX/DEMUX Plug-in Modules; Product Brief; Finisar: Sunnyvale, CA, USA, 2016; Available online: https://www.digikey.kr/htmldatasheets/production/3131447/0/0/1/optical-mux-demux-plug-in-modules-brief.html (accessed on 16 July 2021).
- Guiomar, F.P.; Fernandes, M.A.; Nascimento, J.L.; Monteiro, P.P. 400G+ Wireless Transmission via Free-Space Optics. In Proceedings of the European Conference on Optical Communications (ECOC2021), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar]
- Otaka, A. Flexible Access System Architecture: FASA; NTT Technical Review; NTT: Tokyo, Japan, 2017; Volume 15, pp. 1–7. [Google Scholar]
- Betou, E.I.D.; Bunge, C.A.; Åhlfeldt, H.; Olson, M. WDM-PON Is a Key Component in Next Generation Access; Article; Lightwave: Nashua, NH, USA, 2014; Available online: https://www.lightwaveonline.com/fttx/pon-systems/article/16649721/wdmpon-is-a-key-component-in-next-generation-access (accessed on 14 June 2021).
- Bogataj, T. Safe Migration to Next-Gen Optical Broadband Access: A Gradual and Controlled Journey to XGS-PON and NG-PON2; Executive Whitepaper; Iskratel: Kranj, Slovenia, 2018; Available online: https://www.iskratel.com/es/files/default/Documents/White-Papers/EN/Iskratel-Safe-Migration-to-Next-Gen-Optical-Broadband-Access-WP.pdf (accessed on 14 August 2021).
- Kani, J.; Terada, J.; Suzuki, K.; Otaka, A. Solutions for Future Mobile Fronthaul and Access-Network Convergence. J. Light. Technol. 2017, 35, 527–534. [Google Scholar] [CrossRef]
- Emmendorfer, M.J. Overview of PON Technologies and System Architectures; Presentation; Arris: Suwanee, GA, USA, 2017; Available online: http://www.gcscte.org/presentations/2017/Overview%20of%20PON%20Technologies%20and%20System%20Architectures.pdf (accessed on 13 June 2021).
- Emmendorfer, M.J. Comparing IEEE EPON & FSAN/ITU-T GPON Family of Technologies; Technical Report; Arris: Suwanee, GA, USA, 2014; Available online: https://docplayer.net/29117054-Comparing-ieee-epon-fsan-itu-t-gpon-family-of-technologies.html (accessed on 13 June 2021).
- GW Technology Co., Ltd. EPON Technology White Paper; White Paper; GW Technology Co., Ltd.: Beijing, China, 2007; Available online: http://www.argo-contar.com/solutions/ (accessed on 19 June 2021).
- IEEE 802.3 Study Group. Ethernet in the First Mile: Point to Multipoint Ethernet Passive Optical Network (EPON) Tutorial; Tutorial; IEEE 802.3 Study Group: Piscataway Township, NJ, USA, 2018; Available online: https://www.ieee802.org/3/efm/public/jul01/tutorial/pesavento_1_0701.pdf (accessed on 19 June 2021).
- Xu, Q. What the Future Holds for Next-Generation PON Technologies; Article; Cabling Installation and Maintenance: Boston, MA, USA, 2017; Available online: https://www.cablinginstall.com/wireless-5g/article/16467709/what-the-future-holds-for-nextgeneration-pon-technologies (accessed on 17 June 2021).
- Harstead, E.; van Veen, D.; Houtsma, V. 25G/50G/100G EPON Wavelength Plan; Presentation; Nokia: Espoo, Finland, 2016; Available online: https://www.ieee802.org/3/ca/public/meeting_archive/2016/05/harstead_3ca_2_0516.pdf (accessed on 24 July 2021).
- Dai, E. Migration Paths to 25G EPON, 50G, 100G EPON and Wavelength Plans; Presentation; Cox Communications: Atlanta, GA, USA, 2017. [Google Scholar]
- Broadband Forum. Using GPON Access in the Context of TR-101; Technical Report TR-156, Issue: 4; Broadband Forum: Fremont, CA, USA, 2017; Available online: https://www.broadband-forum.org/technical/download/TR-156.pdf (accessed on 24 May 2021).
- Huawei Technologies. Next-Generation PON Evolution; Manual; Huawei Technologies: Shenzhen, China, 2010; Available online: https://www.yumpu.com/en/document/read/9615806/next-generation-pon-evolution-huawei (accessed on 24 August 2021).
- Sousa, A.N.; Alimi, I.A.; Ferreira, R.M.; Shahpari, A.; Lima, M.; Monteiro, P.P.; Teixeira, A.L. Real-time dual-polarization transmission based on hybrid optical wireless communications. Opt. Fiber Technol. 2018, 40, 114–117. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Cavdar, C.; Tornatore, M.; Figueiredo, G.B.; Chung, H.S.; Lee, H.H.; Park, S.; Mukherjee, B. Handover reduction in virtualized cloud radio access networks using TWDM-PON fronthaul. IEEE/OSA J. Opt. Commun. Netw. 2016, 8, B124–B134. [Google Scholar] [CrossRef]
- Cheng, N.; Gao, J.; Xu, C.; Gao, B.; Liu, D.; Wang, L.; Wu, X.; Zhou, X.; Lin, H.; Effenberger, F. Flexible TWDM PON system with pluggable optical transceiver modules. Opt. Express 2014, 22, 2078–2091. [Google Scholar] [CrossRef]
- Broadband Forum. The Future of Passive Optical Networking Is Here: NG-PON2; Marketing Report; Broadband Forum: Fremont, CA, USA, 2017; Available online: https://www.broadband-forum.org/wp-content/uploads/2018/11/BBF-112-NG-PON2-Marketing-Report-FINAL.pdf (accessed on 17 September 2021).
- Teixeira, A.L.J.; Tavares, A.C.M.; Lopes, A.P.S.; Rodrigues, C.E. Photonic Integrated Tunable Multi—Wavelength Transmitter Circuit. U.S. Patent US20170331558A1, 16 November 2017. [Google Scholar]
- Nesset, D. NG-PON2 Technology and Standards. J. Light. Technol. 2015, 33, 1136–1143. [Google Scholar] [CrossRef]
- Monteiro, P.P.; Viana, D.; da Silva, J.; Riscado, D.; Drummond, M.; Oliveira, A.S.R.; Silva, N.; Jesus, P. Mobile fronthaul RoF transceivers for C-RAN applications. In Proceedings of the 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 5–9 July 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Wey, J.S.; Nesset, D.; Valvo, M.; Grobe, K.; Roberts, H.; Luo, Y.; Smith, J. Physical layer aspects of NG-PON2 standards—Part 1: Optical link design [Invited]. IEEE/OSA J. Opt. Commun. Netw. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Viavi Solutions. Challenges in Next-Gen PON Deployment; White Paper; Viavi Solutions: San Jose, CA, USA, 2017; Available online: https://www.viavisolutions.com/es-es/literature/challenges-next-gen-pon-deployment-white-papers-books-en.pdf (accessed on 29 June 2021).
- Thomas, D.; Pesovic, A. XGS-PON Makes NG-PON Simpler; Technical Report; Nokia: Espoo, Finland, 2016; Available online: https://www.nokia.com/blog/xgs-pon-makes-ng-pon-simpler/ (accessed on 19 June 2021).
- Mikaeil, A.M.; Hu, W.; Ye, T.; Hussain, S.B. Performance evaluation of XG-PON based mobile front-haul transport in cloud-RAN architecture. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, 984–994. [Google Scholar] [CrossRef]
- Nesset, D. PON roadmap [invited]. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, A71–A76. [Google Scholar] [CrossRef]
- TELNET Redes Inteligentes. WaveCEx: WDM Module for PON Coexistence- GPON, XGS-PON, NG-PON2, RF, OTDR; Wavecex Family: 180409 Data Sheet; TELNET Redes Inteligentes: Zaragoza, Spain, 2017; Available online: https://www.telnet-ri.es/wp-content/uploads/2018/04/DS_EQ_GPON_WaveCEx_EN.pdf (accessed on 12 September 2021).
- Xiaowei, D. 5G Converged Optical Fiber and Microwave Transport a Strategy from Ciena and Aviat; White Paper; Ciena: Hanover, MD, USA, 2019; Available online: https://media.ciena.com/documents/5G-Converged-Optical-Fiber-and-Microwave-Transport-Vision-WP-page1.pdf (accessed on 26 June 2021).
- Ericsson. Ericsson Strengthens End-to-End Transport Solutions for 5G; Press Release; Ericsson: Stockholm, Sweden, 2018; Available online: https://mb.cision.com/Main/15448/2608579/903202.pdf (accessed on 16 August 2021).
- Xiaowei, D. 5G E2E Solutions Tailored to Your Needs; Article; ZTE Technologies: Shenzhen, China, 2018; Available online: https://www.zte.com.cn/global/about/magazine/zte-technologies/2018/1/Special-Topic/5G-E2E (accessed on 16 September 2021).
- Ericsson. Ericsson Delivers End-to-End 5G Transport Solution to Swisscom; Press Release; Ericsson: Stockholm, Sweden, 2018; Available online: https://www.ericsson.com/en/press-releases/2018/9/ericsson-delivers-end-to-end-5g-transport-solution-to-swisscom (accessed on 26 June 2021).
- Ericsson. Mobile Transport Solutions to Connect 5G Services, Everywhere; Technical Report; Ericsson: Stockholm, Sweden, 2019; Available online: https://www.ericsson.com/en/mobile-transport (accessed on 23 September 2021).
- Ranaweera, C.; Wong, E.; Nirmalathas, A.; Jayasundara, C.; Lim, C. 5G C-RAN With Optical Fronthaul: An Analysis From a Deployment Perspective. J. Light. Technol. 2018, 36, 2059–2068. [Google Scholar] [CrossRef]
- eCPRI Specification. Common Public Radio Interface: eCPRI Interface Specification; Interface Specification, v2.0; eCPRI Specification: Stockholm, Sweden, 2019; Available online: https://www.gigalight.com/downloads/standards/ecpri-specification.pdf (accessed on 12 May 2021).
- eCPRI Specification. Common Public Radio Interface: eCPRI Interface Specification; Interface Specification, v1.0; eCPRI Specification: Stockholm, Sweden, 2017; Available online: http://www.cpri.info/downloads/eCPRI_v_1_0_2017_08_22.pdf (accessed on 27 September 2021).
- NGMN Alliance. NGMN Overview on 5G RAN Functional Decomposition; Final Deliverable (Approved), Version: 1.0; NGMN Alliance: Frankfurt, Germany, 2018; Available online: https://www.ngmn.org/publications/ngmn-overview-on-5g-ran-functional-decomposition.html (accessed on 19 June 2021).
- Alimi, I.A.; Monteiro, P.P. Functional Split Perspectives: A Disruptive Approach to RAN Performance Improvement. Wirel. Pers. Commun. 2019, 106, 205–218. [Google Scholar] [CrossRef]
- Bartelt, J.; Rost, P.; Wubben, D.; Lessmann, J.; Melis, B.; Fettweis, G. Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks. IEEE Wirel. Commun. 2015, 22, 105–111. [Google Scholar] [CrossRef]
- Wubben, D.; Rost, P.; Bartelt, J.S.; Lalam, M.; Savin, V.; Gorgoglione, M.; Dekorsy, A.; Fettweis, G. Benefits and Impact of Cloud Computing on 5G Signal Processing: Flexible centralization through cloud-RAN. IEEE Signal Process. Mag. 2014, 31, 35–44. [Google Scholar] [CrossRef]
- Alimi, I.A.; Abdalla, A.M.; Rodriguez, J.; Pereira Monteiro, P.; Teixeira, A.L.; Zvánovec, S.; Ghassemlooy, Z. Enabling VLC and WiFi Network Technologies and Architectures Toward 5G. In Optical and Wireless Convergence for 5G Networks; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; Chapter 5; pp. 101–122. [Google Scholar] [CrossRef]
- SCF-159 R7. Small Cell Virtualization Functional Splits and Use Cases. Available online: http://scf.io/en/documents/159_-_Small_Cell_Virtualization_Functional_Splits_and_Use_Cases.php (accessed on 25 June 2021).
- 3GPP R3-161813. Transport Requirement for CU&DU Functional Splits Options. Available online: https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contributionId=723384 (accessed on 12 May 2021).
- 3GPP-WG3 R3-162102. CU-DU Split: Refinement for Annex A (Transport Network and RAN Internal Functional Split). Available online: http://www.3gpp.org/DynaReport/TDocExMtg–R3-93b–31676.htm (accessed on 22 August 2021).
- 3GPP TR38.816 V15.0.0. Study on CU-DU Lower Layer Split for NR. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3364 (accessed on 3 September 2021).
- 3GPP TR-38.801 R14. Study on New Radio Access Technology; Radio Access Architecture and Interfaces. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3056 (accessed on 8 July 2021).
- TransPacket. 5G Ethernet X-Haul. Available online: http://elektronikknett.no/Whitepapers/5G-Ethernet-X-Haul (accessed on 10 September 2021).
- Alimi, I.A.; Patel, R.; Silva, N.; Sun, C.; Ji, H.; Shieh, W.; Pinto, A.; Muga, N. A Review of Self-Coherent Optical Transceivers: Fundamental Issues, Recent Advances, and Research Directions. Appl. Sci. 2021, 11, 7554. [Google Scholar] [CrossRef]
Codec Technology | ||
---|---|---|
Video Format | HEVC a (Mbps) | VVC b (Mbps) |
720p HD (1280 × 720) | 2 | 1.3 |
1080p HD (1920 × 1080) | 4 | 2.6 |
4k UHD (3840 × 2160) | 12 | 7.8 |
Standard | 802.11 | 802.11a | 802.11b | 802.11g | 802.11n | 802.11ac | 802.11ad | 802.11af | 802.11ah | 802.11ax | 802.11ay | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Released date | 1997 | 1999 | 1999 | 2003 | 2009 | 2013 | 2012 | 2014 | 2016 | 2019 a | 2019 a | [173,174,175] |
Frequency band (GHz) | 2.4 | 5 | 2.4 | 2.4 | 2.4/5 | 5 | 60 | 2.4/5 | 2.4/5 | 2.4/5 | 60 | [18,132,173,174,175,176,177,178] |
Modulation | DSSS, FHSS | OFDM | DSSS | DSSS, OFDM | OFDM | OFDM | SC,OFDM | OFDM | OFDM | OFDM | SC,OFDM | [173,176,177] |
Range (m) b | 20 | 35 | 35 | 38 | 70 | 35 | 3.3 | 1000 | 1000 | 304.8 | 10 | [174,176,177] |
Advanced antenna schemes | N/A | N/A | N/A | N/A | MIMO, up to 4 SS | MIMO, MU-MIMO, up to 8 SS | BF | MIMO, up to 4 SS | MIMO, up to 4 SS | MIMO, MU-MIMO, up to 8 SS | MIMO, up to 4 SS | [173,175,177,179] |
Bandwidth (MHz) | 20 | 20 | 20 | 20 | 20, 40 | 20, 40, 80, 160 | 2160 | 6–8 | 1–16 | 20–160 | 8000 | [173,175,177,179,180] |
Data rate (Mbps) c | 2 | 54 | 11 | 54 | 600 | 6933 | 6757 | 568.9 | 347 | 10,530 | 20,000 | [18,132,173,174,175,176,178,180] |
802.16 | 802.16-2004 | 802.16e-2005 | Reference | |
---|---|---|---|---|
Completed | December 2001 | June 2004 | December 2005 | [159,183] |
Frequency band | 10–66 GHz | 2–11 GHz | 2–11 GHz for fixed; 2–6 GHz for mobile applications | [159,178,183,184,185] |
MAC architecture | PtMP, mesh | PtMP, mesh | PtMP, mesh | [159,183,185] |
Application | LoS, fixed | NLOS, fixed | NLOS, fixed and mobile | [159,183,184,185] |
Gross data rate | 32–134.4 Mbps | 1–75 Mbps | 1–75 Mbps | [159,183,184,185] |
Modulation | QPSK, 16-QAM, 64-QAM | QPSK, 16 QAM, 64 QAM | QPSK, 16 QAM, 64 QAM | [159,183,184,186] |
Transmission scheme | SC only | SC, 256 OFDM or 2048 OFDM | SC, 256 OFDM or scalable OFDM with 128, 512, 1024, or 2048 subcarriers | [159,183,185,186] |
Multiplexing | Burst TDM/TDMA | Burst TDM/TDMA/OFDMA | Burst TDM/TDMA/OFDMA | [159,183,186] |
Cell radius | Over 10 km | 7–10 km | 2–5 km | [183,184] |
Features | 1G | 2G | 3G | 4G | 5G | Reference |
---|---|---|---|---|---|---|
Deployment | 1970–1980 | 1990–2004 | 2004–2010 | 2010–2020 | 2020 | [17,194,195,196,197,198] |
Switching | Circuit | Circuit, packet | Packet except for air interface | All packet | All packet | [17,194,199,200,201] |
Technology | Analog cellular: AMPS, NMT, TACS, RTMI, ETACS, JTACS, Netz-C | Digital cellular: D-AMPS (IS-136), CDMA (IS-95), GSM, GPRS, PDC, EDGE, HSCSP | UMTS (WCDMA), GSM PS & CS evols., 1x EV-DO Rel. 0, A, B; cdma2000 (IS-95C); HSPA evol.; WiMAX; LTE Rel. 8, 9 | LTE Rel. 10–14, WiMAX 2, Unified IP & seamless PAN/LAN/WLAN amalgam | 3GPP NR Rel. 15 & 3GPP NR Rel. 16 | [17,194,195,197,198,199,200,201,202,203,204,205,206] |
Core network | PSTN | PSTN | Packet network | Internet | Internet | [17,199,200] |
Data rate | 2 Kbps | 14.4–64 Kbps | 144 Kbps–2 Mbps | 200 Mbps–1 Gbps | >1 Gbps | [17,194,199,200,202,207] |
Service | Mobile telephony | Digital voice, voice mail, SMS | Integrated high-quality video, audio, & data, streaming | Dynamic information access, wearable devices | Dynamic information access, wearable devices with AI capabilities | [17,194,199,200,201] |
Multiplexing | FDMA | TDMA/CDMA | CDMA | CDMA, SCDMA, OFDMA | CDMA, OFDMA, GFDM, SCDMA, VFDM | [17,194,199,200,208] |
Hand off | Horizontal | Horizontal | Horizontal | Horizontal & vertical | Horizontal & vertical | [17,194,199,200] |
Features | 4G | 5G | 6G | Reference |
---|---|---|---|---|
Use cases | MBB | • eMBB • mMTC • URLLC | • LDHMC/uMUB • FeMBB/CAeC • ELPC • ERLLC/MBRLLC/mURLLC/EDuRLLC • umMTC | [223,224,225,226] |
Applications | • Mobile Internet • Mobile pay • High-definition videos • Voice • Mobile TV | • V2X • VR/AR/360 degree videos • Telemedicine • UHD videos • IoT • Smart city/factory/home • Wearable devices | • Internet of Bio-Nano-Things • Tactile/Haptic Internet • Full-sensory digital sensing & reality • Fully automated driving • Space travel • Holographic verticals and society • Deep-sea sightseeing • Industrial Internet | [223,224,227,228] |
Network characteristics | Flat & All-IP | • Virtualization • Cloudization • Slicing • Softwarization | • Slicing • Intelligentization • Cloudization • Virtualization • Softwarization | [223,226,227] |
Peak data rate | 100 Mb/s | 20 Gb/s | ≥1 Tb/s | [223,224,228,229,230,231,232] |
Experienced data rate | 10 Mb/s | 0.1 Gb/s | 1 Gb/s | [223,228,231] |
Spectrum efficiency | 1× | 3× that of 4G | 5–10× that of 5G | [223,229] |
Network energy efficiency | 1× | 10–100× that of 4G | 10–100× that of 5G | [223,229] |
Area traffic capacity | 0.1 Mb/s/m | 10 Mb/s/m | 1 Gb/s/m | [223] |
Connectivity density | 10 devices/km | 10 devices/km | 10 devices/km | [223,224,228,229,230] |
Latency | 10 ms | 1 ms | 10–100 s | [223,224,229,231,232] |
Mobility | 350 km/h | 500 km/h | ≥1000 km/h | [223,229] |
Technologies | • D2D communications • OFDM • Turbo code • MIMO • Hetnet • Carrier aggregation • ICIC • Unlicensed spectrum | • LDPC & polar codes • Flexible frame structure • Massive MIMO • Ultradense networks • NOMA • SDN/NFV/network slicing • Cloud/fog/edge computing | • AI/machine learning • SM-MIMO • Laser & VLC • LIS and HBF • OAM multiplexing • Blockchain-based spectrum sharing • Quantum communications & computing | [223,225,226,229,231] |
Frequency bands | Sub-6 GHz (0.6–6.0 GHz) | • Sub-6 GHz • mm-wave for fixed access (30–300 GHz) | • Sub-6 GHz • mm-wave for mobile access • Exploration of higher frequency and THz bands (0.06–10 THz) • Non-RF (e.g., VLC, optical, etc.) | [223,224,226,227,230,231,233] |
Reliability (%) | 99.99 | 99.999 | 99.99999 | [224,229,232] |
Technology | Down-/Upstream Rate a | Efficiency Range (km) a | Advantages | Limitations | Reference |
---|---|---|---|---|---|
Wired Broadband Technologies | |||||
ADSL, ADSL2, ADSL2+ | 24/3 Mbps | 5 |
|
| [16,19,234,235] |
VDSL, VDSL2, Vectoring | 100/40 Mbps | 1 | |||
HFC | 40/30 Mbps b | 2–100 c |
|
| [16,19,234,235] |
BPL | 200/2 Mbps | 1–3 |
|
| [16,18,236] |
Fiber | 10/10 Gbps (even more) | 10–60 |
|
| [16,18,19,234,235,236] |
Wireless Broadband Technologies | |||||
LMDS | 155/1.54 Mbps | 2–8 |
|
| [16,18,237,238] |
MMDS | 1.5/0.3 Mbps | 56 |
|
| [16,18,237,238] |
FSO | 5/3 Gbps d | 4 d |
|
| [16,166] |
Wi-Fi (802.11n) | 600/600 Mbps | 0.2 |
|
| [16,19,234,235] |
WiMAX | 6/4 Mbps | 60 | |||
LTE (Advanced): 4G | 100/30 (1000/30) Mbps e | 3–6 |
|
| [16,19,234,235] |
HSPA/HSPA+: 3G | 100/40 Mbps | 3 | |||
5G | 10/20 Gbps | 3–6 |
|
| [19,234,235] |
Satellite | 30/10 Mbps | 1000–36,000 |
|
| [16,19,234,235] |
Terrain | |||
---|---|---|---|
Parameter | A | B | C |
a | 4.6 | 4.0 | 3.6 |
b | 0.0075 | 0.0065 | 0.005 |
e | 12.6 | 17.1 | 20 |
Equipment Class | Power (EIRP) | Reference |
---|---|---|
Base Station | 75 dBm/100 MHz | [264,321,322,323,324] |
Mobile Station | 43 dBm | [12,264,321,323,324,325] |
Transportable Station | 55 dBm | [12,264,321,322,324,325,326] |
Experience | Score |
---|---|
Bad | 1 |
Poor | 2 |
Fair | 3 |
Good | 4 |
Excellent | 5 |
Solution | Advantages | Limitations | Reference |
---|---|---|---|
Optical systems | |||
Dedicated fiber |
|
| [5,8,11,47,143,371,372,376,384,387] |
TWDM-PON (i.e., GE-PON, XG-PON, and NG-PON2) |
|
| [5,8,11,25,47,143,371,372,376,387] |
WDM-PON (i.e., WS-WDM-PON, WR-WDM-PON) |
|
| [5,8,11,25,47,143,371,372,376,387] |
PtP WDM overlay (i.e., NG-PON2) |
|
| [5,8,11,25,47,143,371,372,376,387] |
Active systems | |||
Ethernet (i.e., CPRI over Ethernet), OTN |
|
| [5,11,25,47,143,371,372,376,384,387] |
Wireless systems | |||
LTE, 5G |
|
| [5,11,47,143,371,372,376,387] |
MW, FSO |
|
| [5,11,47,143,376,378] |
Parameter | Symbol | Typical Value |
---|---|---|
Number of antennas | M | 1–16 |
Number of sectors | 1–3 | |
Line code | C | 10/8 |
Control overheads | 16/15 | |
Sampling rate (MHz) | 15.36/10 | |
Bit resolution | 15 |
Parameter (UL/DL and 5G/LTE) | Typical Value | |
---|---|---|
Baselines bandwidth | 100 MHz | |
Number of sub-carrier | 1200 SC/20 MHz | |
OFDM symbol rate | 14 symbol/ms | |
MIMO layer | 8 | |
Number of antenna ports | 32 | |
Modulation scheme | UL | 64 QAM |
DL | 256 QAM | |
Average content size | UL | 30 Bytes |
DL | 20 Bytes | |
LTE peak data rate | UL | 50 Mbps |
DL | 150 Mbps | |
Scheduling/control signaling overhead | UL | 24 Mbps, 2640 Mbps |
DL | 16 Mbps, 133 Mbps | |
MAC information | UL | 80 Mbps, 120 Mbps |
DL | 121 Mbps, 713.9 Mbps | |
Spectrum Usage | 5G | 99% |
LTE | 90% | |
Upper bound estimation margin | 5G | 120% |
LTE | 100% | |
Maximum number of UE | 1000 | |
% UE reporting requests | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimi, I.A.; Patel, R.K.; Muga, N.J.; Pinto, A.N.; Teixeira, A.L.; Monteiro, P.P. Towards Enhanced Mobile Broadband Communications: A Tutorial on Enabling Technologies, Design Considerations, and Prospects of 5G and beyond Fixed Wireless Access Networks. Appl. Sci. 2021, 11, 10427. https://doi.org/10.3390/app112110427
Alimi IA, Patel RK, Muga NJ, Pinto AN, Teixeira AL, Monteiro PP. Towards Enhanced Mobile Broadband Communications: A Tutorial on Enabling Technologies, Design Considerations, and Prospects of 5G and beyond Fixed Wireless Access Networks. Applied Sciences. 2021; 11(21):10427. https://doi.org/10.3390/app112110427
Chicago/Turabian StyleAlimi, Isiaka A., Romil K. Patel, Nelson J. Muga, Armando N. Pinto, António L. Teixeira, and Paulo P. Monteiro. 2021. "Towards Enhanced Mobile Broadband Communications: A Tutorial on Enabling Technologies, Design Considerations, and Prospects of 5G and beyond Fixed Wireless Access Networks" Applied Sciences 11, no. 21: 10427. https://doi.org/10.3390/app112110427
APA StyleAlimi, I. A., Patel, R. K., Muga, N. J., Pinto, A. N., Teixeira, A. L., & Monteiro, P. P. (2021). Towards Enhanced Mobile Broadband Communications: A Tutorial on Enabling Technologies, Design Considerations, and Prospects of 5G and beyond Fixed Wireless Access Networks. Applied Sciences, 11(21), 10427. https://doi.org/10.3390/app112110427