System-Level Assessment of a C-RAN based on Generalized Space–Frequency Index Modulation for 5G New Radio and Beyond
Abstract
:1. Introduction
2. System Model
2.1. Precoding-Aided Transmitter-Side Generalized Space–Frequency Index Modulation (PT-GSFIM)
2.2. 5G New Radio 3D Scenarios
2.2.1. Urban Macro
2.2.2. Urban Micro—Street Canyon
2.2.3. Indoor Hotspot
3. Transmitter and Receiver Structure
3.1. Precoder Design
3.2. Complex Rotation Matrices
3.3. Receiver Design
4. Numerical Results
4.1. Link-Level Simulations
4.2. System-Level Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 3rd Generation Partnership Project (3GPP). TS 38.101 v14.1.1, 5GNR. User Equipment (UE) radio transmission and reception, Release 15, August 2017. Available online: https://3gpp.org/ftp/Specs/archive/38_series/38.101-1/38101-1-001.zip (accessed on 7 January 2022).
- Marques da Silva, M.; Dinis, R. Power-Ordered NOMA with Massive MIMO for 5G Systems. Appl. Sci. 2021, 11, 3541. [Google Scholar] [CrossRef]
- Basar, E.; Wen, M.; Mesleh, R.; Di Renzo, M.; Xiao, Y.; Haas, H. Index Modulation Techniques for Next-Generation Wireless Networks. IEEE Access. 2017, 5, 16693–16746. [Google Scholar] [CrossRef]
- Basar, E. Index modulation techniques for 5G wireless networks. IEEE Commun. Mag. 2016, 54, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Zhang, M.; Wen, M.; Yang, L. Index Modulation for 5G: Striving to Do More with Less. IEEE Wirel. Commun. 2018, 25, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Correia, A.; Souto, N.; Sebastiao, P.; Gomez-Barquero, D.; Fuentes, M. Broadcasting Scalable Video with Generalized Spatial Modulation in Cellular Networks. IEEE Access. 2020, 8, 22136–22144. [Google Scholar] [CrossRef]
- Dogan Tusha, S.; Tusha, A.; Basar, E.; Arslan, H. Multidimensional Index Modulation for 5G and Beyond Wireless Networks. Proc. IEEE. 2021, 109, 170–199. [Google Scholar] [CrossRef]
- Mesleh, R.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S. Spatial Modulation. IEEE Trans. Veh. Technol. 2008, 57, 2228–2241. [Google Scholar] [CrossRef]
- Younis, A.; Serafimovski, N.; Mesleh, R.; Haas, H. Generalised spatial modulation. In Proceedings of the Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 1498–1502. [Google Scholar]
- Zhang, R.; Yang, L.; Hanzo, L. Generalised Pre-Coding Aided Spatial Modulation. IEEE Trans. Wirel. Commun. 2013, 12, 5434–5443. [Google Scholar] [CrossRef]
- Basar, E.; Aygolu, U.; Panayirci, E.; Poor, H. Orthogonal Frequency Division Multiplexing with Index Modulation. IEEE Trans. Signal. Processing 2013, 61, 5536–5549. [Google Scholar] [CrossRef]
- Basar, E. On Multiple-Input Multiple-Output OFDM with Index Modulation for Next Generation Wireless Networks. IEEE Trans. Signal. Processing 2016, 64, 3868–3878. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wen, M.; Jiang, X.; Duan, W. Space-Time Multiple-Mode Orthogonal Frequency Division Multiplexing with Index Modulation. IEEE Access. 2017, 5, 23212–23222. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, M.; Cheng, X. Precoded Index Modulation for Multi-Input Multi-Output OFDM. IEEE Trans. Wirel. Commun. 2018, 17, 17–28. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, S.; Dan, L.; Lei, X.; Yang, P.; Xiang, W. OFDM With Interleaved Subcarrier-Index Modulation. IEEE Commun. Lett. 2014, 18, 1447–1450. [Google Scholar] [CrossRef]
- Li, J.; Dang, S.; Wen, M.; Jiang, X.; Peng, Y.; Hai, H. Layered Orthogonal Frequency Division Multiplexing with Index Modulation. IEEE Syst. J. 2019, 13, 3793–3802. [Google Scholar] [CrossRef] [Green Version]
- Mao, T.; Wang, Z.; Wang, Q.; Chen, S.; Hanzo, L. Dual-Mode Index Modulation Aided OFDM. IEEE Access. 2017, 5, 50–60. [Google Scholar] [CrossRef]
- Mao, T.; Wang, Q.; Wang, Z. Generalized Dual-Mode Index Modulation Aided OFDM. IEEE Commun. Lett. 2017, 21, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Basar, E.; Li, Q.; Zheng, B.; Zhang, M. Multiple-Mode Orthogonal Frequency Division Multiplexing with Index Modulation. IEEE Trans. Commun. 2017, 65, 3892–3906. [Google Scholar] [CrossRef]
- Wen, M.; Li, Q.; Basar, E.; Zhang, W. Generalized Multiple-Mode OFDM With Index Modulation. IEEE Trans. Wirel. Commun. 2018, 17, 6531–6543. [Google Scholar] [CrossRef]
- Althunibat, S.; Mesleh, R.; Rahman, T. A Novel Uplink Multiple Access Technique Based on Index-Modulation Concept. IEEE Trans. Commun. 2019, 67, 4848–4855. [Google Scholar] [CrossRef]
- Basar, E. Media-Based Modulation for Future Wireless Systems: A Tutorial. IEEE Wirel. Commun. 2019, 26, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Souto, N.; Correia, A. Frequency Domain Equalization for Single and Multiuser Generalized Spatial Modulation Systems in Time Dispersive Channels. IEEE Wirel. Commun. Lett. 2020, 9, 316–320. [Google Scholar] [CrossRef]
- Datta, T.; Eshwaraiah, H.; Chockalingam, A. Generalized Space-and-Frequency Index Modulation. IEEE Trans. Veh. Technol. 2016, 65, 4911–4924. [Google Scholar] [CrossRef] [Green Version]
- Velez, V.; Pavia, J.; Souto, N.; Sebastiao, P.; Correia, A. A Generalized Space-Frequency Index Modulation Scheme for Downlink MIMO Transmissions with Improved Diversity. IEEE Access. 2021, 9, 118996–119009. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Gong, Z.; Wu, M. Space-Frequency Coded Index Modulation with Linear-Complexity Maximum Likelihood Receiver in the MIMO-OFDM System. IEEE Signal Processing Lett. 2016, 23, 1439–1443. [Google Scholar] [CrossRef]
- Zaidi, S.; Ben Smida, O.; Affes, S.; Vilaipornsawai, U.; Zhang, L.; Zhu, P. User-Centric Base-Station Wireless Access Virtualization for Future 5G Networks. IEEE Trans. Commun. 2019, 67, 5190–5202. [Google Scholar] [CrossRef]
- 3rd Generation Partnership Project (3GPP). TS 38.211 v15.2.0. 5G/NR Physical Channels and Modulation, (Release 15). 2018. Available online: https://3gpp.org/ftp/Specs/archive/38_series/38.211/38211-f30.zip. (accessed on 30 September 2021).
- 3rd Generation Partnership Project (3GPP). TS 38.214; NR.; Physical layer procedures for data, (Release 15). 2020. Available online: https://3gpp.org/ftp/Specs/archive/38_series/38.214/38214-fb0.zip. (accessed on 30 September 2021).
- 3rd Generation Partnership Project (3GPP). TS 38.213; NR.; Physical layer procedures for control, (Release 15). 2020. Available online: https://3gpp.org/ftp/Specs/archive/38_series/38.213/38213-fb0.zip. (accessed on 30 September 2021).
- Zaidi, A.; Baldemair, R.; Tullberg, H.; Bjorkegren, H.; Sundstrom, L.; Medbo, J.; Kilinc, C.; Da Silva, I. Waveform and Numerology to Support 5G Services and Requirements. IEEE Commun. Mag. 2016, 54, 90–98. [Google Scholar] [CrossRef]
- Begishev, V.; Samuylov, A.; Moltchanov, D.; Machnev, E.; Koucheryavy, Y.; Samouylov, K. Connectivity Properties of Vehicles in Street Deployment of 3GPP NR Systems. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018. [Google Scholar]
- Gkonis, P.; Trakadas, P.; Kaklamani, D. A Comprehensive Study on Simulation Techniques for 5G Networks: State of the Art Results, Analysis, and Future Challenges. Electronics 2020, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi Narasimhan, T.; Chockalingam, A. On the Capacity and Performance of Generalized Spatial Modulation. IEEE Commun. Lett. 2016, 20, 252–255. [Google Scholar] [CrossRef]
- 3rd Generation Partnership Project (3GPP). TR 38.913 5G.; Study on scenarios and requirements for next generation access technologies, version 16.0.0 Release 16, July 2020. Available online: https://3gpp.org/ftp/Specs/archive/38_series/38.913/38913-g00.zip (accessed on 18 November 2021).
- 3rd Generation Partnership Project (3GPP). TR 38.901 Study on channel model for frequencies from 0.5 to 100 GHz (Release 14). 2017. Available online: https://3gpp.org/ftp/Specs/archive/38_series/38.901/38901-e20.zip (accessed on 30 September 2021).
- 3rd Generation Partnership Project (3GPP). TR 36.873 Study on 3D channel model for LTE (Release 12), 2014. Available online: https://3gpp.org/ftp/Specs/archive/36_series/36.873/36873-c00.zip (accessed on 30 September 2021).
- Spencer, Q.; Swindlehurst, A.; Haardt, M. Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels. IEEE Trans. Signal. Processing 2004, 52, 461–471. [Google Scholar] [CrossRef]
- Souto, N.; Correia, A. A Precoding Aided Space Domain Index Modulation Scheme for Downlink Multiuser MIMO Systems. IEEE Trans. Veh. Technol. 2020, 69, 12333–12337. [Google Scholar] [CrossRef]
- Pavia, J.; Velez, V.; Ferreira, R.; Souto, N.; Ribeiro, M.; Silva, J.; Dinis, R. Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems. Sensors 2021, 21, 6054. [Google Scholar] [CrossRef] [PubMed]
- Boutros, J.; Viterbo, E. Signal space diversity: A power- and bandwidth-efficient diversity technique for the Rayleigh fading channel. IEEE Trans. Inf. Theory 1998, 44, 1453–1467. [Google Scholar] [CrossRef] [Green Version]
- Correia, A. Optimized Complex Constellations for Transmitter Diversity. Wirel. Pers. Commun. J. 2002, 20, 267–284. [Google Scholar]
- Lopes, H.; Souto, N. Iterative Signal Detection for Large-Scale GSM-MIMO Systems. IEEE Trans. Veh. Technol. 2018, 67, 7734–7738. [Google Scholar] [CrossRef]
- Van Chien, T.; Björnson, E. Massive MIMO Communications. In 5G Mobile Communications; Xiang, W., Zheng, K., Shen, X., Eds.; Springer: Berlin, Germany, 2017. [Google Scholar]
- Correia, A.; Silva, M.M. Link and system level simulation for MIMO. In MIMO Processing for 4G and Beyond: Fundamentals and Evolution; Silva, M.M., Monteiro, F.A., Eds.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Pavia, J.; Velez, V.; Brogueira, B.; Souto, N.; Correia, A. Precoded Generalized Spatial Modulation for Downlink MIMO Transmissions in Beyond 5G Networks. Appl. Sci. 2020, 10, 6617. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, Z.; Dan, L.; Yang, P.; Yin, L.; Xiang, W. Low-Complexity Signal Detection for Generalized Spatial Modulation. IEEE Commun. Lett. 2014, 18, 403–406. [Google Scholar] [CrossRef]
1: Input: x0, r0, z0, u0, v0, w0, , , ρx, ρr, ρz, Q |
2: |
3: |
4: for t = 0, 1, … Q-1 do |
5: |
6: |
7: |
8: |
9: |
10: If t = Q-1 then |
11: |
12: else |
13: |
14: end if |
15: If then |
16: , |
17: |
18: end if |
19: |
20: |
21: |
22: end for |
23: Output: |
Modulation(SE) | UMa, 3C | UMi, 3C | InD, 3C | UMa, 1C | UMi, 1C | InD, 1C |
---|---|---|---|---|---|---|
64QAM(5) | 2.00 | 2.75 | 1.55 | 0.51 | 0.61 | 0.59 |
64QAM(8) | 2.00 | 2.29 | 1.73 | 0.65 | 0.98 | 0.88 |
4QAM(5) | 1.76 | 1.84 | 1.52 | 0.66 | 0.90 | 0.97 |
4QAM(8) | 1.36 | 1.38 | 1.16 | 0.71 | 0.80 | 1.00 |
16QAM(12) | 1.69 | 1.71 | 1.42 | 0.88 | 1.06 | 1.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velez, V.; Pavia, J.P.; Rita, C.; Gonçalves, C.; Souto, N.; Sebastião, P.; Correia, A. System-Level Assessment of a C-RAN based on Generalized Space–Frequency Index Modulation for 5G New Radio and Beyond. Appl. Sci. 2022, 12, 1592. https://doi.org/10.3390/app12031592
Velez V, Pavia JP, Rita C, Gonçalves C, Souto N, Sebastião P, Correia A. System-Level Assessment of a C-RAN based on Generalized Space–Frequency Index Modulation for 5G New Radio and Beyond. Applied Sciences. 2022; 12(3):1592. https://doi.org/10.3390/app12031592
Chicago/Turabian StyleVelez, Vasco, João Pedro Pavia, Catarina Rita, Carolina Gonçalves, Nuno Souto, Pedro Sebastião, and Américo Correia. 2022. "System-Level Assessment of a C-RAN based on Generalized Space–Frequency Index Modulation for 5G New Radio and Beyond" Applied Sciences 12, no. 3: 1592. https://doi.org/10.3390/app12031592
APA StyleVelez, V., Pavia, J. P., Rita, C., Gonçalves, C., Souto, N., Sebastião, P., & Correia, A. (2022). System-Level Assessment of a C-RAN based on Generalized Space–Frequency Index Modulation for 5G New Radio and Beyond. Applied Sciences, 12(3), 1592. https://doi.org/10.3390/app12031592