Brewing with 10% and 20% Malted Lentils—Trials on Laboratory and Pilot Scales
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Laboratory-Scale Brewing Trial
3.1.1. Odor
3.1.2. Saccharification Time
3.1.3. Filtration Time
3.1.4. pH
3.1.5. Color
3.1.6. Turbidity
3.1.7. Extract and Apparent Extract
3.1.8. Apparent Degree of Fermentation
3.1.9. Metal Ion Analyses
3.2. Pilot-Scale Brewing Trial
3.2.1. Odor
3.2.2. Saccharification Time
3.2.3. Lautering Time
3.2.4. Free Amino Nitrogen
3.2.5. pH
3.2.6. Color
3.2.7. Extract and Apparent Extract
3.2.8. Apparent Degree of Fermentation
3.2.9. Bitterness
3.2.10. Total Polyphenols
3.2.11. Total Carbohydrates
3.2.12. Foam Stability
3.2.13. Gluten Content
3.2.14. Sensory Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Black, K.; Barnett, A.; Tziboula-Clarke, A.; White, P.J.; Iannetta, P.P.M.; Walker, G. Faba bean as a novel brewing adjunct: Consumer evaluation. J. Inst. Brew. 2019, 125, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Bogdan, P.; Kordialik-Bogacka, E. Alternatives to malt in brewing. Trends Food Sci. Technol. 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Kordialik-Bogacka, E.; Bogdan, P.; Diowksz, A. Malted and unmalted oats in brewing. J. Inst. Brew. 2014, 120, 390–398. [Google Scholar] [CrossRef]
- Steiner, E.; Auer, A.; Becker, T.; Gastl, M. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material. J. Sci. Food Agric. 2012, 92, 803–813. [Google Scholar] [CrossRef] [PubMed]
- The Brewers of Europe Beer Statistics 2018 Edition. Available online: www.brewersofeurope.org (accessed on 10 August 2021).
- Muñoz-Insa, A.; Gastl, M.; Zarnkow, M.; Becker, T. Optimization of the malting process of oat (Avena sativa L.) as a raw material for fermented beverages. Span. J. Agric. Res. 2011, 9, 510–523. [Google Scholar] [CrossRef] [Green Version]
- Klose, C.; Mauch, A.; Wunderlich, S.; Thiele, F.; Zarnkow, M.; Jacob, F.; Arendt, E.K. Brewing with 100% oat malt. J. Inst. Brew. 2011, 117, 411–421. [Google Scholar] [CrossRef]
- Schnitzenbaumer, B.; Arendt, E.K. Brewing with up to 40% unmalted oats (Avena sativa) and sorghum (Sorghum bicolor): A review. J. Inst. Brew. 2014, 120, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Zarnkow, M.; Keßler, M.; Back, W.; Arendt, E.K.; Gastl, M. Optimisation of the mashing procedure for 100% malted proso millet (Panicum miliaceum L.) as a raw material for gluten-free beverages and beers. J. Inst. Brew. 2010, 116, 141–150. [Google Scholar] [CrossRef]
- Zarnkow, M. Optimisation of malting conditions of quinoa. Brauwelt 2008, 374–379. [Google Scholar]
- Deželak, M.; Zarnkow, M.; Becker, T.; Košir, I.J. Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. J. Inst. Brew. 2014, 120, 360–370. [Google Scholar] [CrossRef]
- Bailliere, J.; Laureys, D.; Aelbrecht, G.; Vermeir, P.; Vanderputten, D.; De Clippeleer, J. Unmalted alternative (pseudo) cereals for the production of specialty beers. In Proceedings of the World Brewing Congress 2020, American Society of Brewing Chemists, Master Brewers Association of the Americas, Online, 13–17 August 2020. [Google Scholar]
- Bailliere, J.; De Clippeleer, J.; De Leyn, I.; Huys, J.; Laureys, D.; Vanderputten, D.; Vermeir, P. Comparison of Congress Mash with Final 65°C Mash for Production of Wort with Unmalted Barley, Tritordeum and Quinoa with or without Pregelatinizing and/or Enzyme Addition. In Proceedings of the ASBC Meeting 2021, American Society of Brewing Chemists, Online, 7–9 June 2021. [Google Scholar]
- Martenka, J. Reis und Mais in der Brauindustrie. Master’s Thesis, Technical University Munich-Weihenstephan, Freising, Germany, 2003. [Google Scholar]
- Unger, R. Beer in the Middle Ages and the Renaissance, 1st ed.; University of Pennsylvania Press: Philadelphia, PA, USA, 2004; p. 181. ISBN 978-0-8122-1999-9. [Google Scholar]
- Erskine, W.; Muehlbauer, F.J.; Sarker, A.; Sharma, B. The lentil: Botany, Production and Uses, 1st ed.; CAB International: Wallingford, UK, 2009; pp. 382–383. ISBN 9781845934873. [Google Scholar]
- Bhatty, R.S. Composition and quality of lentil (Lens culinaris Medik): A review. Can. Inst. Food Sci. Technol. J. 1988, 21, 144–160. [Google Scholar] [CrossRef]
- Ereifej, K.I.; Haddad, S.G. Chemical composition of selected Jordanian cereals and legumes as compared with the FAO, Moroccan, East Asian and Latin American tables for use in the Middle East. Trends Food Sci. Technol. 2000, 11, 374–378. [Google Scholar] [CrossRef]
- El-Adawy, T.A.; Rahma, E.H.; El-Bedawey, A.A.; El-Beltagy, A.E. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods Hum. Nutr. 2003, 58, 1–13. [Google Scholar] [CrossRef]
- Shahwar, D.; Bhat, T.M.; Ansari, M.Y.K.; Chaudhary, S.; Aslam, R. Health functional compounds of lentil (Lens culinaris Medik): A review. Int. J. Food Prop. 2017, 20, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.; Timilsena, Y.; Adhikari, B. Global production, processing and utilization of lentil: A review. J. Integr. Agric. 2017, 16, 2898–2913. [Google Scholar] [CrossRef]
- Frias, J.; Vidal--Valverde, C.; Bakhsh, A.; Arthur, A.E.; Hedley, C. An assessment of variation for nutritional and non-nutritional carbohydrates in lentil seeds (Lens culinaris). Plant Breed. 1994, 113, 170–173. [Google Scholar] [CrossRef]
- Frias, J.; Diaz-Pollan, C.; Hedley, C.L.; Vidal-Valverde, C. Evolution and kinetics of monosaccharides, disaccharides and α-galactosides during germination of lentils. Zeitschrift fur Leb. -Untersuchung und -forsch. 1996, 202, 35–39. [Google Scholar] [CrossRef]
- Frias, J.; Prodanov, M.; Sierra, I.; Vidal-Valverde, C. Effect of light on carbohydrates and hydrosoluble vitamins of lentils during soaking. J. Food Prot. 1995, 58, 692–695. [Google Scholar] [CrossRef]
- Vidal-Valverde, C.; Frías, J.; Valverde, S. Changes in the carbohydrate composition of legumes after soaking and cooking. J. Am. Diet. Assoc. 1993, 93, 547–550. [Google Scholar] [CrossRef]
- Jarpa-Parra, M. Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. Int. J. Food Sci. Technol. 2018, 53, 892–903. [Google Scholar] [CrossRef] [Green Version]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- World Health Organization. Codex Alimentarius: Codex Standard for Foods for Special Dietary Use for Persons Intolerant to Gluten; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Watson, H.G.; Decloedt, A.I.; Vanderputten, D.; Van Landschoot, A. Variation in gluten protein and peptide concentrations in Belgian barley malt beers. J. Inst. Brew. 2018, 124, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Poreda, A.; Bijak, M.; Zdaniewicz, M.; Jakubowski, M.; Makarewicz, M. Effect of wheat malt on the concentration of metal ions in wort and brewhouse by-products. J. Inst. Brew. 2015, 121, 224–230. [Google Scholar] [CrossRef]
- Poreda, A.; Tuszyński, T.; Zdaniewicz, M.; Sroka, P.; Jakubowski, M. Support materials for yeast immobilization affect the concentration of metal ions in the fermentation medium. J. Inst. Brew. 2013, 119, 164–171. [Google Scholar] [CrossRef]
- Aleksander, P.; Piotr, A.; Tadeusz, T.; Tuszyński, T.; Makarewicz, M. Accumulation and release of metal ions by brewer’s yeast during successive fermentations. J. Inst. Brew. 2009, 115, 78–83. [Google Scholar] [CrossRef]
- Boulton, C.M.; Quain, D. Brewing Yeast and Fermentation, 1st ed.; Blackwell Science: Oxford, UK, 2001; pp. 80–90. ISBN 0-632-05475-1. [Google Scholar]
- Trummer, J.; Poreda, A.; Berski, W. Effect of malting on commercial green lentils and their suitability for wort production. Przem. Ferment. I Owocowo-Warzywny 2019, 10, 14–18. [Google Scholar] [CrossRef]
- Strong, G.; Bach, R.; Garofalo, P.; Hall, M.L.; Houseman, D.; Tumarkin, M.; Zainasheff, J.; England, K.; Hieronymus, S.; Fitzpatrick, T.; et al. BJCP Guidelines for Beer, Mead and Cider; BJCP Inc.: St. Louis Park, MN, USA, 2008; p. 4. [Google Scholar]
- European Brewing Convention. Analytica EBC; Fachverlag Hans Carl: Brussels, Belgium, 2010. [Google Scholar]
- Anger, H.-M. Mitteleuropäische Brautechnische Analysenkommission—Brautechnische Analysenmethoden—Rohstoffe: Gerste, Rohfrucht, Malz, Hopfen und Hopfenprodukte; Selbstverlag der MEBAK: Freising-Weihenstephan, Germany, 2006; p. 137. [Google Scholar]
- Miedaner, H. MEBAK-Band 2 Bier.pdf, 4th ed.; Selbstverlag der MEBAK: Freising-Weihenstephan, Germany, 2002; pp. 65, 212. ISBN 3-9805814-5-4. [Google Scholar]
- Pfenninger, H. Mitteleuropäische Brautechnische Analysenkommission—Brautechnische Analysenmethoden Band I, 3rd ed.; Selbstverlag der MEBAK: Freising-Weihenstephan, Germany, 1997; pp. 226, 234–235. ISBN 3-9805814-0-3. [Google Scholar]
- Kunze, W. Technology Brewing and Malting, 3rd ed.; VLB Berlin Int Edition: Berlin, Germany, 2004; pp. 161, 486, 583, 239–243. ISBN 3-921690-49-8. [Google Scholar]
- Yadav, S.; McNeil, D.; Stevenson, P. Lentil An Ancient Crop for Modern Times, 1st ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 75, 89. ISBN 9781402063121. [Google Scholar]
- Tárrago, J.F.; Nicolás, G. Starch degradation in the cotyledons of germinating lentils. Plant Physiol. 1976, 58, 618–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasiński, A.; Błażewicz, J.; Kawa-Rygielska, J.; Śniegowska, J.; Zarzecki, M. Analysis of physicochemical parameters of Congress worts prepared from special legume seed malts, acquired with and without use of enzyme preparations. Foods 2021, 10, 304. [Google Scholar] [CrossRef]
- Demirbas, A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005, 90, 773–777. [Google Scholar] [CrossRef]
- Arendt, E.K.; Zannini, E. Cereal Grains for the Food and Beverage Industries; Woodhead Publishing Limited: Sawston, UK; CRC Press: Cambridge, UK, 2013; pp. 155–201. ISBN 9780857094131. [Google Scholar]
- Esslinger, H.M. Handbook of Brewing: Processes, Technology, Markets, 1st ed.; Wiley-VCH: Weinheim, Germany, 2009; pp. 222, 129–130, 209–213, 244–245. ISBN 978-3-527-31674-8. [Google Scholar]
- Narziss, L. Abriss der Bierbrauerei, 7th ed.; Wiley-VCH: Freising-Weihenstephan, Germany, 2005; pp. 415, 204–205, 306–308. ISBN 0897910214. [Google Scholar]
- Bamforth, C.; Russell, I.; Stewart, G. Beer: A Quality Perspective, 1st ed.; Elsevier Inc.: San Diego, CA, USA, 2009; pp. 114–120. ISBN 978-0-12-669201-3. [Google Scholar]
- Krahl, M. Funktionelle Getränke auf Basis vermälzter Zerealien und Pseudozerealien. Ph.D. Thesis, Technical University Munich-Weihenstephan, Freising, Germany, 2010. [Google Scholar]
- Wietstock, P.C.; Kunz, T.; Waterkamp, H.; Methner, F.J. Uptake and release of Ca, Cu, Fe, Mg, and Zn during beer production. J. Am. Soc. Brew. Chem. 2015, 73, 179–184. [Google Scholar] [CrossRef]
- Lestienne, I.; Icard-Vernière, C.; Mouquet, C.; Picq, C.; Trèche, S. Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem. 2005, 89, 421–425. [Google Scholar] [CrossRef]
- Wang, N.; Daun, J.K. Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chem. 2006, 95, 493–502. [Google Scholar] [CrossRef]
- Walker, G.M. Metals in yeast fermentation processes. Adv. Appl. Microbiol. 2004, 54, 197–229. [Google Scholar] [CrossRef] [Green Version]
- Stratford, M. Yeast flocculation: Calcium specificity. Yeast 1989, 5, 487–496. [Google Scholar] [CrossRef]
- Annemüller, G.; Manger, H.-J. Gärung und Reifung des Bieres, 1st ed.; VLB Berlin: Berlin, Germany, 2009; pp. 492–493. ISBN 978-3-921690-73-4. [Google Scholar]
- Pfenninger, H. Mitteleuropäische Brautechnische Analysenkommission—Brautechnische Analysenmethoden Band III, 2nd ed.; Selbstverlag der MEBAK: Freising-Weihenstephan, Germany, 1996; p. 115. ISBN 3-9805814-2-X. [Google Scholar]
- Walker, G.M.; De Nicola, R.; Anthony, S.; Learmonth, R. Yeast-metal interactions: Impact on brewing and distilling fermentations. In Proceedings of the Institute of Brewing & Distilling Asia Pacific Section Convention, Hobarts, Australia, 19–24 March 2006. [Google Scholar]
- Poreda, A.; Stefaniuk, K.; Hoc, J.; Zdaniewicz, M. Improved efficiency of brewers wort supplementation with zinc ions. Przem. Ferment. i Owocowo-Warzywny 2014, 2, 4–8. [Google Scholar]
- Krüger, E.; Anger, H.-M. Kennzahlen zur Betriebskontrolle und Qualitätsbeschreibung in der Brauwirtschaft, 1st ed.; Behr’s Verlag—Hamburg: Hamburg, Germany, 1990; pp. 315–320. ISBN 978-3925673757. [Google Scholar]
- Pagenstecher, M.; Maia, C.; Andersen, M.L. Retention of iron and copper during mashing of roasted malts. J. Am. Soc. Brew. Chem. 2021, 79, 138–144. [Google Scholar] [CrossRef]
- Filipowska, W.; Jaskula-Goiris, B.; Ditrych, M.; Trueba, P.B.; De Rouck, G.; Aerts, G.; Powell, C.; Cook, D.; Cooman, L. De On the contribution of malt quality and the malting process to the formation of beer staling aldehydes: A review. J. Inst. Brew. 2021, 127, 107–126. [Google Scholar] [CrossRef]
- Zufall, C.; Tyrell, T. The influence of heavy metal ions on beer flavour stability. J. Inst. Brew. 2008, 114, 134–142. [Google Scholar] [CrossRef]
- Bamforth, C.W. Brewing: New technologies, 1st ed.; Woodhead Publishing Limited: Sawston, UK; CRC Press: Cambridge, UK, 2006; p. 54. ISBN 9781855734906. [Google Scholar]
- Bamforth, C.W. Brewing Materials and Processes: A Practical Approach to Beer Excellence, 1st ed.; Elsevier Inc.: Davis, CA, USA, 2016; pp. 12, 80. ISBN 9780127999548. [Google Scholar]
- Hanke, S. Untersuchungen zum Einfluss der Hopfungstechnologie auf die Geschmacksstabilität und Harmonie untergäriger Biere. Ph.D. Thesis, Technical University Munich-Weihenstephan, Freising, Germany, 2009. [Google Scholar]
- Samaras, T.S.; Camburn, P.A.; Chandra, S.X.; Gordon, M.H.; Ames, J.M. Antioxidant properties of kilned and roasted malts. J. Agric. Food Chem. 2005, 53, 8068–8074. [Google Scholar] [CrossRef]
- Amarowicz, R.; Estrella, I.; Hernandez, T.; Robredo, S.; Troszynska, A.; Kosinska, A.; Pegg, R.B. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 2010, 121, 705–711. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Polyphenol-rich lentils and their health promoting effects. Int. J. Mol. Sci. 2017, 18, 2390. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, S.; Owusu Apenten, R.K. Iron binding characteristics of phenolic compounds: Some tentative structure-activity relations. Food Chem. 2003, 81, 133–140. [Google Scholar] [CrossRef]
- Andjelković, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006, 98, 23–31. [Google Scholar] [CrossRef]
- Hirota, N.; Kuroda, H.; Takoi, K.; Kaneko, T.; Kaneda, H.; Yoshida, I.; Takashio, M.; Ito, K.; Takeda, K. Development of Novel Barley with Improved Beer Foam and Flavor Stability—The Impact of Lipoxygenase-1-Less Barley in the Brewing Industry. In Proceedings of the 30th EBC, Prague, Czech Republic, 14–19 May 2005. [Google Scholar]
- Yu, J.; Huang, S.; Dong, J.; Fan, W.; Huang, S.; Liu, J.; Chang, Z.; Tian, Y.; Hao, J.; Hu, S. The influence of LOX-less barley malt on the flavour stability of wort and beer. J. Inst. Brew. 2014, 120, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Pathiratne, S.M.; Shand, P.J.; Pickard, M.; Wanasundara, J.P.D. Generating functional property variation in lentil (Lens culinaris) flour by seed micronization: Effects of seed moisture level and surface temperature. Food Res. Int. 2015, 76, 122–131. [Google Scholar] [CrossRef]
- Watson, H.G.; Vanderputten, D.; Van Landschoot, A.; Decloedt, A.I. Applicability of different brewhouse technologies and gluten-minimization treatments for the production of gluten-free (barley) malt beers: Pilot- to industrial-scale. J. Food Eng. 2019, 245, 33–42. [Google Scholar] [CrossRef]
- Roland, W.S.U.; Pouvreau, L.; Curran, J.; Van De Velde, F.; De Kok, P.M.T. Flavor aspects of pulse ingredients. Cereal Chem. 2017, 94, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Lovegren, N.V.; Fisher, G.S.; Legendre, M.G.; Schuller, W.H. Volatile constituents of dried legumes. J. Agric. Food Chem. 1979, 27, 851–853. [Google Scholar] [CrossRef]
- Briggs, D.; Boulton, C.; Brookes, P.; Stevens, R. Brewing Science and practice, 1st ed.; Woodhead Publishing Limited: Sawston, UK; CRC Press: Cambridge, UK, 2004; p. 156. ISBN 0849325471. [Google Scholar]
- Troszyńska, A.; Estrella, I.; Lamparski, G.; Hernández, T.; Amarowicz, R.; Pegg, R.B. Relationship between the sensory quality of lentil (Lens culinaris) sprouts and their phenolic constituents. Food Res. Int. 2011, 44, 3195–3201. [Google Scholar] [CrossRef]
Type of Analysis | Analysis | Method |
---|---|---|
Mash analyses | Congress mash | EBC 4.5.1 |
Odor | EBC 4.5.1 | |
Saccharification rate | EBC 4.5.1 | |
Filtration | EBC 4.5.1 | |
Wort analyses | Free amino nitrogen | EBC 8.10 |
pH | EBC 8.17 | |
Color | EBC 8.5 | |
Extract | EBC 8.3 | |
Beer analyses | Color | EBC 9.6 |
Bitterness | EBC 9.8 | |
Free Amino Nitrogen | EBC 9.10 | |
Total Polyphenols | EBC 9.11 | |
Total Carbohydrates | EBC 9.26 | |
pH | EBC 9.35 | |
Foam Stability | EBC 9.42 | |
Extract | EBC 9.43.2 | |
Apparent degree of fermentation | MEBAK 2.9 |
BM | BM + 10% LM | BM + 20% LM | |
---|---|---|---|
Mash analyses | |||
Odor | Normal | Normal | Normal |
Saccharification time (min) | 10–15 | 20–25 | 25–30 |
Filtration time (min) | 25 b ± 1.5 | 22 a ± 1.5 | 21 a ± 0.6 |
Wort analyses | |||
pH | 5.58 a ± 0.01 | 5.82 b ± 0.01 | 5.98 c ± 0.01 |
Color (EBC unit) | 4.66 a ± 0.04 | 5.70 b ± 0.10 | 7.55 c ± 0.09 |
Extract (°Plato) | 8.87 c ± 0.06 | 8.60 b ± 0.02 | 8.30 a ± 0.04 |
Turbidity (EBC unit) | 4.0 c ± 0.3 | 3.1 b ± 0.1 | 1.5 a ± 0.4 |
Beer analyses | |||
pH | 4.74 a ± 0.03 | 4.83 b ± 0.01 | 4.90 c ± 0.01 |
Color (EBC unit) | 4.56 a ± 0.05 | 5.40 b ± 0.08 | 7.11 c ± 0.14 |
Apparent extract (°Plato) | 1.90 a ± 0.04 | 1.89 a ± 0.07 | 1.98 b ± 0.04 |
Apparent degree of fermentation (%) | 78.57 b ± 0.28 | 78.03 b ± 0.72 | 76.11 a ± 0.51 |
BM | BM + 10% LM | BM + 20% LM | |
---|---|---|---|
Mg2+ (mg/L) | 77.9 a ± 4.1 | 71.9 a ± 8.2 | 78.1 a ± 5.5 |
Ca2+ (mg/L) | 21.3 a ± 4.1 | 21.7 a ± 1.6 | 23.2 a ± 5.5 |
Zn2+ (mg/L) | 0.43 a ± 0.07 | 0.48 a ± 0.1 | 0.56 b ± 0.05 |
Fe (mg/L) | 0.11 a ± 0.05 | 0.13 a ± 0.06 | 0.16 a ± 0.07 |
BM | BM + 10% LM | BM + 20% LM | |
---|---|---|---|
Mash analysis | |||
Odor | Normal | Normal | Normal |
Saccharification time (min) | <10 | <10 | <10 |
Lautering time (min) | 93.6 c ± 1.2 | 81.7 b ± 1.5 | 77.3 a ± 2.1 |
Wort analysis | |||
Free amino nitrogen (mg/L) | 390.3 c ± 15.1 | 311.5 b ± 13.9 | 280.8 a ± 14.2 |
pH | 5.92 a ± 0.02 | 5.96 ab ± 0.04 | 6.01 b ± 0.04 |
Color (EBC unit) | 41.3 a ± 1.1 | 48.9 b ± 0.8 | 54.1 c ± 0.5 |
Extract (°Plato) | 10.57 c ± 0.12 | 10.20 b ± 0.12 | 9.48 a ± 0.12 |
Beer analysis | |||
Free amino nitrogen (mg/L) | 191.5 a ± 12.6 | 202.1 a ± 14.7 | 200.0 a ± 5.9 |
pH | 4.51 a ± 0.10 | 4.63 ab ± 0.09 | 4.72 b ± 0.07 |
Color (EBC unit) | 37.7 a ± 0.6 | 46.4 b ± 0.9 | 51.5 c ± 0.5 |
Apparent extract (°Plato) | 2.24 a ± 0.16 | 2.14 a ± 0.16 | 1.96 a ± 0.15 |
Apparent degree of fermentation (%) | 78.75 a ± 1.39 | 79.05 a ± 0.72 | 79.10 a ± 1.66 |
Bitterness (IBU) | 19.3 a ± 0.4 | 20.0 a ± 0.6 | 21.2 b ± 0.6 |
Total polyphenols (mg/L) | 200.1 a ± 5.8 | 216.1 b ± 2.3 | 230.5 c ± 2.2 |
Total carbohydrates (g/100 mL) | 2.66 b ± 0.14 | 2.40 ab ± 0.20 | 2.04 a ± 0.22 |
Foam stability (s) | 297.9 a ± 0.5 | 307.0 b ± 0.3 | 316.3 c ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trummer, J.; Watson, H.; De Clippeleer, J.; Poreda, A. Brewing with 10% and 20% Malted Lentils—Trials on Laboratory and Pilot Scales. Appl. Sci. 2021, 11, 9817. https://doi.org/10.3390/app11219817
Trummer J, Watson H, De Clippeleer J, Poreda A. Brewing with 10% and 20% Malted Lentils—Trials on Laboratory and Pilot Scales. Applied Sciences. 2021; 11(21):9817. https://doi.org/10.3390/app11219817
Chicago/Turabian StyleTrummer, Jonas, Hellen Watson, Jessika De Clippeleer, and Aleksander Poreda. 2021. "Brewing with 10% and 20% Malted Lentils—Trials on Laboratory and Pilot Scales" Applied Sciences 11, no. 21: 9817. https://doi.org/10.3390/app11219817
APA StyleTrummer, J., Watson, H., De Clippeleer, J., & Poreda, A. (2021). Brewing with 10% and 20% Malted Lentils—Trials on Laboratory and Pilot Scales. Applied Sciences, 11(21), 9817. https://doi.org/10.3390/app11219817