The Quality and Composition of Fatty Acids in Adipose Tissue-Derived from Wild Animals; A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Chemical Analysis
2.2.1. Determination of Fatty Acid (FA) Composition
2.2.2. Determination of Distribution of FAs in Triacylglycerol (TAG)
2.2.3. Determination of the Oxidative Induction Time
2.3. Assessment of Nutritional and Healthy Quality of Fat
2.4. Statistical Analysis
3. Results
3.1. Fatty Acid Composition
3.2. Fatty Acids Distribution in TAG
3.3. Oxidative Stability
3.4. Mutritional and Healthy Quality of Fat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarricone, S.; Colonna, M.A.; Cosentino, C.; Giannico, F.; Ragni, M. Meat quality and lipid fatty acid profile from wild thrush (Turdus philomelos), woodcock (Scolopax rusticola) and starling (Sturnus vulgaris): A preliminary comparative study. Lipids Health Dis. 2020, 19, 119. [Google Scholar] [CrossRef] [PubMed]
- Strazdina, V.; Jemeljanovs, A.; Sterna, V. Nutrition value of wild animal meat. Proc. Latv. Acad. Sci. Sect. B 2013, 67, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef]
- Soriano, A.; Sánchez-García, C. Nutritional Composition of Game Meat from Wild Species Harvested in Europe; Meat and Nutrition, Chhabi Lal Ranabhat IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Cordain, L.; Watkins, B.A.; Florant, G.L.; Kelher, M.; Rogers, L.; Li, Y. Fatty acid analysis of wild ruminant tissues: Evolutionary implications for reducing diet-related chronic disease. Eur. J. Clin. Nutr. 2002, 56, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schley, L.; Roper, T.J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal Rev. 2003, 33, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Käkel, Ä.R.; Hy Värinen, H. Site-specific fatty acids composition in adipose tissue of several northern aquatic and terrestrial mammals. Comp. Biochem. Physiol. 1996, 115, 501–514. [Google Scholar] [CrossRef]
- Hancox, M. Badger research and human medicine. Lancet 1992, 339, 371–372. [Google Scholar] [CrossRef]
- Zalewski, K.; Martysiak-Żurowska, D.; Iwaniuk, M.; Nitkiewicz, B.; Stołyhwo, A. Characterization of fatty acid composition in Eurasian badger (Meles meles). Pol. J. Environ. Stud. 2007, 16, 645–650. [Google Scholar]
- Yang, X.; Zhang, B.; Guo, Y.; Jiao, P.; Long, F. Effects of dietary lipids and clostridium butyricum on fat deposition and meat quality of broiler chicken. Poult. Sci. 2010, 89, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Mapiye, C.; Chimonyo, M.; Dzama, K.; Hugo, A.; Strydom, P.E.; Muchenje, V. Fatty acid composition of beef from Nguni Steers supplemented with Acacia karroo leaf-meal. J. Food Compos. Anal. 2011, 24, 523–528. [Google Scholar] [CrossRef]
- Thijssen, M.A.; Hornstra, G.; Mensink, R.P. Stearic, oleic, and linoleic acids have comparable effects on markers of thrombotic tendency in healthy human subjects. J. Nutr. 2005, 135, 2805–2811. [Google Scholar] [CrossRef] [Green Version]
- Karapanagiotidis, I.T.; Yakupitiyage, A.; Little, D.; Bell, M.V.; Mente, E. The nutritional value of lipids in various tropical aquatic animals from rice-fish farming systems in northeast Thailand. J. Food Compos. Anal. 2010, 23, 1–8. [Google Scholar] [CrossRef]
- Kien, C.L.; Bunn, J.Y.; Stevens, R.; Bain, J.; Ikayeva, O.; Crain, K.; Koves, T.R.; Muoio, D.M. Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans. Am. J. Clin. Nutr. 2014, 99, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acids ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Saldaña, M.D.A.; Martínez-Monteagudo, S.I. Oxidative stability of fats and oils measured by differential scanning calorimetry for food and industrial applications. In Applications of Calorimetry in a Wide Context—Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry; Elkordy, A.A., Ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Wąsowicz, E.; Gramza, A.; Hęś, M.; Jeleń, H.H.; Korczak, J.; Małecka, M.; Mildner-Szkudlarz, S.; Rudzińska, M.; Samotyja, U.; Zawirska-Wojtasiak, R. Oxidation of lipids in food. Polish J. Food Nutr. Sci. 2004, 13, 87–100. [Google Scholar]
- Ostrowska-Ligęza, E.; Bekas, W.; Kowalska, D.; Łobacz, M.; Wroniak, M.; Kowalski, B. Kinetics of commercial olive oil oxidation: Dynamic differential scanning calorimetry and Rancimat studies. Eur. J. Lipid Sci. Technol. 2010, 112, 268–274. [Google Scholar] [CrossRef]
- Bryś, J.; Wirkowska, M.; Górska, A.; Ostrowska-Ligęza, E.; Bryś, A. Application of the calorimetric and spectroscopic methods in analytical evaluation of the human milk fat substitutes. J. Therm. Anal. Calorim. 2014, 118, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Ciemniewska-Żytkiewicz, H.; Ratusz, K.; Bryś, J.; Reder, M.; Koczoń, P. Determination of the oxidative stability of hazelnut oils by PDSC and rancimat methods. J. Therm. Anal. Calorim. 2014, 118, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Bryś, J.; Górska, A.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Bryś, A.; Brzezińska, R.; Dolatowska-Żebrowska, K.; Ziarno, M.; Obranović, M.; Škevin, D. Study of the properties of human milk fat substitutes using DSC and GC methods. Appl. Sci. 2021, 11, 319. [Google Scholar] [CrossRef]
- Official Journal of the Republic of Poland, Dz.U. 2019 poz. 1782. 10 September 2019. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001782 (accessed on 2 September 2021).
- Official Journal of the Republic of Poland, Dz.U. 2014 poz. 1900. 17 December 2014. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20140001900 (accessed on 2 September 2021).
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- EN ISO 5509. Animal and Vegetable Fats and Oils—Preparation of Methyl Esters of Fatty Acids (ISO 5509:2000); ISO: Geneva, Switzerland, 2000. [Google Scholar]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.; Ribeiro Mde, A.; Sarubbo, L.A.; Andrade, S.A.; Filho, A.B. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.C. Variation of lipid and tocopherol composition in three strains of channel catfish (Ictalurus punctatus). J. Sci. Food Agric. 1992, 59, 529–536. [Google Scholar] [CrossRef]
- Du, C.; Sato, A.; Watanabe, S.; Wu, C.Z.; Ikemoto, A.; Ando, K.; Kikugawa, K.; Fujii, Y.; Okuyama, H. Cholesterol synthesis in mice is suppressed but lipofuscin formation is not affected by long-term feeding of n-3 fatty acid-enriched oils compared with lard and n-6 fatty acid-enriched oils. Biol. Pharm. Bull. 2003, 26, 766–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Wlazełko, M.; Łabudzki, L.; Górecki, G.; Skubis, J. Seasonal pattern of wild boar’s diet in Western Poland–research in the zielonka game investigation centre. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 2009, 8, 55–70. [Google Scholar]
- Meyer, H.H.; Rowell, A.; Streich, W.J.; Stoffel, B.; Hofmann, R.R. Accumulation of polyunsaturated fatty acids by concentrate selecting ruminants. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998, 120, 263–268. [Google Scholar] [CrossRef]
- Lee, S.; Lee, E. Diet of the wild boar (Sus scrofa): Implications for management in forest-agricultural and urban environments in South Korea. PeerJ 2019, 7, e7835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razmaite, V.; Švirmickas, G.J.; Šiukščius, A. Effect of weight, sex and hunting period on fatty acid composition of intramuscular and subcutaneous fat from wild boar. Ital. J. Anim. Sci. 2012, 11, 174–179. [Google Scholar] [CrossRef]
- Popa, C.D.; Arts, E.; Fransen, J.; van Riel, P.L. Atherogenic index and high-density lipoprotein cholesterol as cardiovascular risk determinants in rheumatoid arthritis: The impact of therapy with biologicals. Mediat. Inflamm. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Dietschy, J.M. Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. J. Nutr. 1998, 128, 444–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warensjö, E.; Sundström, J.; Vessby, B.; Cederholm, T.; Risérus, U. Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: A population-based prospective study. Am. J. Clin. Nutr. 2008, 88, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.P.; Raundrup, K.; Cabo, Â.; Bessa, R.J.B.; Almeida, A.M. Fatty acid composition of muscle, adipose tissue and liver from muskoxen (Ovibos moschatus) living in West Greenland. PLoS ONE 2015, 10, e0145241. [Google Scholar] [CrossRef] [PubMed]
- Garton, G.A.; Duncan, W.R.H. Fatty acid composition and intramolecular structure of triglycerides from adipose tissue of red deer and reindeer. J. Sci. Food Agric. 1971, 22, 29–33. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandacek, R.J. Linoleic acid: A nutritional quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Janicki, B.; Rosinski, A.; Elminowska-Wenda, G.; Bielinska, H.; Gronek, P. Effect of Feeding System (Intensive versus Semi-intensive) on yield and fatty acid composition of abdominal fat in white Italian geese. J. Appl. Anim. Res. 2000, 17, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Okruszek, A. Fatty acid composition of muscle and adipose tissue of indigenous polish geese breeds. Arch. Anim. Breed. 2012, 55, 294–302. [Google Scholar] [CrossRef]
- Mu, H.; Høy, C.E. The digestion of dietary triacylglycerols. Progr. Lipid Res. 2004, 43, 105–133. [Google Scholar] [CrossRef]
- Kubow, S. The influence of positional distribution of fatty acids in native, interesterified and structure-specific lipids on lipoprotein metabolism and atherogenesis. J. Nutr. Biochem. 1996, 7, 530–541. [Google Scholar] [CrossRef]
- Small, D.M. The effects of glyceride structure on adsorption and metabolism. Annu. Rev. Nutr. 1991, 11, 413–434. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Castellote-Bargalló, A.I.; Campoy-Folgoso, C.; Rivero-Urgel, M.; Tormo-Carnicé, R.; Infante-Pinad, D.; López-Sabatera, M.C. The influence of dietary palmitic acid triacylglyceride position on the fatty acid, calcium and magnesium contents of at term newborn faeces. Early Hum. Dev. 2001, 65 (Suppl. S2), 83–94. [Google Scholar] [CrossRef]
- Bryś, J.; Wirkowska, M.; Górska, A.; Ostrowska-Ligęza, E.; Bryś, A.; Koczoń, P. The use of DSC and FT-IR spectroscopy for evaluation of oxidative stability of interesterified fats. J. Therm. Anal. Calorim. 2013, 112, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Smith, S.B.; Lunt, D.K.; Smith, D.R.; Walzem, R.L. Producing high-oleic acid beef and the impact of ground beef consumption on risk factors for cardiovascular disease: A review. Meat Sci. 2020, 163, 108076. [Google Scholar] [CrossRef]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef]
- Kerr, B.J.; Kellner, T.A.; Shurson, G.C. Characteristics of lipids and their feeding value in swine diets. J. Anim. Sci. Biotechnol. 2015, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razmaitė, V.; Šiukščius, A. Seasonal variation in fatty acid composition of wild boar in Lithuania. Ital. J. Anim. Sci. 2019, 18, 350–354. [Google Scholar] [CrossRef] [Green Version]
Fatty Acids | Boar | Badger | Goose | H |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
C12:0 | 0.26 ± 0.007 b | 0.09 ± 0.007 a | 0.10 ± 0.007 ab | 9.221 ** |
C14:0 | 3.84 ± 0.042 b | 1.37 ± 0.007 a | 1.31 ± 0.049 a | 10.057 ** |
C15:0 | 0.21 ± 0.007 b | 0.05 ± 0.007 a | 0.05 ± 0.007 a | 8.000 * |
C16:0 | 19.23 ± 0.021 a | 21.49 ± 0.085 b | 21.03 ± 0.410 ab | 10.057 ** |
C17:0 | 0.41 ± 0.007 b | 0.31 ± 0.007 a | 0.32 ± 0.007 ab | 9.221 ** |
C18:0 | 6.95 ± 0.141 a | 12.48 ± 0.035 b | 12.19 ± 0.156 ab | 10.057 ** |
C20:0 | 0.42 ± 0.382 a | 0.27 ± 0.007 a | 0.24 ± 0.021 a | 2.514 NS |
C23:0 | 0.45 ± 0.049 | not detected | not detected | |
Σ SFA | 31.75 ± 0.156 a | 36.05 ± 0.049 b | 35.22 ± 0.283 ab | 10.057 ** |
C14:1 | 0.74 ± 0.014 b | 0.02 ± 0.007 a | 0.02 ± 0.007 a | 8.000 * |
C15:1 | 0.18 ± 0.007 b | 0.03 ± 0.007 a | 0.04 ± 0.014 a | 9.221 ** |
C16:1 | 10.20 ± 0.014 b | 2.69 ± 0.021 ab | 2.24 ± 0.042 a | 10.057 ** |
C17:1 | 0.47 ± 0.014 b | 0.25 ± 0.014 a | 0.25 ± 0.007 a | 7.926 * |
C18:1 | 37.98 ± 0.269 a | 43.98 ± 0.042 b | 42.54 ± 0.262 ab | 10.057 ** |
C20:1 | 0.37 ± 0.007 a | 1.05 ± 0.007 b | 0.97 ± 0.028 ab | 10.353 ** |
Σ MUFA | 49.93 ± 0.297 b | 48.01 ± 0.014 ab | 46.05 ± 0.240 a | 10.057 ** |
C18:2 n-6 | 11.80 ± 0.120 a | 12.53 ± 0.021 ab | 14.76 ± 0.064 b | 10.057 ** |
C20:2 n-6 | 0.49 ± 0.035 a | 0.75 ± 0.007 ab | 0.85 ± 0.021 b | 10.057 ** |
C20:3 n-6 | 0.47 ± 0.021 b | 0.19 ± 0.021 a | 0.23 ± 0.028 ab | 10.057 ** |
C20:4 n-6 | trace | 0.26 ± 0.000 a | 0.28 ± 0.028 a | 0.000 NS |
Σ n-6 | 12.75 ± 0.177 a | 13.72 ± 0.049 ab | 16.11 ± 0.028 b | 10.057 ** |
C18:3 n-3 | 2.03 ± 0.035 b | 1.18 ± 0.007 a | 1.30 ± 0.014 ab | 10.057 ** |
C20:3 n-3 | 1.12 ± 0.014 b | 0.27 ± 0.007 a | 0.24 ± 0.000 a | 10.057 ** |
C20:5 n-3 | trace | trace | trace | |
C22:6 n-3 | trace | trace | trace | |
Σ n-3 | 3.15 ± 0.049 b | 1.44 ± 0.000 a | 1.54 ± 0.014 a | 10.057 ** |
Σ PUFA | 15.89 ± 0.226 ab | 15.16 ± 0.049 a | 17.65 ± 0.042 b | 10.057 ** |
C18:1 trans | trace | trace | 0.39 ± 0.001 | |
C18:2 trans | 0.41 ± 0.007 b | 0.24 ± 0.007 a | 0.23 ± 0.007 a | 9.221 ** |
Σ trans fatty acids | 0.41 ± 0.007 ab | 0.24 ± 0.007 a | 0.62 ± 0.007 b | 10.057 ** |
Σ total other fatty acids | 2.03 ± 0.382 b | 0.57 ± 0.007 a | 0.46 ± 0.014 a | 10.057 ** |
Positions of TAGs | Fat | Fatty Acid (wt%) | |||||
---|---|---|---|---|---|---|---|
C16:0 | C16:1 | C18:0 | C18:1 | C18:2 n-6 | C18:3 n-3 | ||
sn-2 | boar | 43.24 ± 0.085 b | 3.03 ± 0.141 a | 7.68 ± 0.049 b | 26.55 ± 0.191 a | 9.33 ± 0.099 a | 1.78 ± 0.021 ab |
badger | 24.17 ± 0.445 a | 5.67 ± 0.297 a | 2.36 ± 0.014 a | 34.50 ± 0.212 b | 21.19 ± 0.064 b | 2.98 ± 0.021 b | |
goose | 38.85 ± 0.163 ab | 3.17 ± 0.368 a | 8.80 ± 0.007 b | 29.56 ± 0.474 ab | 8.51 ± 0.099 a | 1.63 ± 0.078 a | |
H | 10.057 ** | 7.543 NS | 10.057 ** | 10.057 ** | 10.057 ** | 10.057 ** | |
sn-1,3 | boar | 7.22 ± 0.042 a | 13.79 ± 0.071 b | 6.59 ± 0.025 a | 43.70 ± 0.095 a | 13.03 ± 0.049 ab | 2.15 ± 0.011 b |
badger | 19.46 ± 0.223 b | 0.53 ± 0.148 a | 17.11 ± 0.007 b | 46.55 ± 0.106 ab | 11.54 ± 0.032 a | 0.46 ± 0.011 a | |
goose | 12.81 ± 0.081 ab | 2.44 ± 0.184 a | 14.32 ± 0.004 b | 51.19 ± 0.237 b | 14.53 ± 0.049 b | 0.95 ± 0.039 ab | |
H | 10.057 ** | 10.057 ** | 10.057 ** | 10.057 ** | 10.057 ** | 10.057 ** |
Temperature | Induction Time of the Fats [min] | H | ||
---|---|---|---|---|
Boar | Badger | Goose | ||
100 °C | 118.44 ± 2.411 b | 98.95 ± 1.994 ab | 56.70 ± 2.227 a | 10.057 ** |
110 °C | 54.78 ± 0.361 b | 41.32 ± 0.877 ab | 29.54 ± 1.082 a | 10.057 ** |
120 °C | 25.84 ± 0.665 b | 21.78 ± 0.622 ab | 15.66 ± 0.134 a | 10.057 ** |
130 °C | 12.38 ± 0.311 b | 10.07 ± 0.559 ab | 7.76 ± 0.735 a | 10.057 ** |
140 °C | 6.26 ± 0.834 b | 4.33 ± 0.078 ab | 3.67 ± 0.141 a | 10.057 ** |
Healthy Lipids Indices | Boar | Badger | Goose | Recommendation |
---|---|---|---|---|
PUFA/SFA | 0.50 ± 0.010 | 0.42 ± 0.002 | 0.50 ± 0.005 | >0.4 [4] |
PUFA n-6/n-3 | 4.05 ± 0.008 | 9.52 ± 0.034 | 10.46 ± 0.078 | <4.0 [4] |
AI | 0.24 ± 0.001 | 0.089 ± 0.000 | 0.084 ± 0.004 | <1.0 [28] |
TI | 0.73 ± 0.003 | 1.00 ± 0.002 | 0.96 ± 0.013 | <0.5 [28] |
h/H | 2.27 ± 0.017 | 2.54 ± 0.014 | 2.65 ± 0.067 | the higher more beneficial for human health [31] |
PI (%) | 20.75 ± 0.304 | 18.76 ± 0.071 | 21.41 ± 0.051 | the lower it is, the more resistant to oxidation; the higher it is, the more PUFA included |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamulka, J.; Bryś, J.; Górska, A.; Janaszek-Mańkowska, M.; Górnicka, M. The Quality and Composition of Fatty Acids in Adipose Tissue-Derived from Wild Animals; A Pilot Study. Appl. Sci. 2021, 11, 10029. https://doi.org/10.3390/app112110029
Hamulka J, Bryś J, Górska A, Janaszek-Mańkowska M, Górnicka M. The Quality and Composition of Fatty Acids in Adipose Tissue-Derived from Wild Animals; A Pilot Study. Applied Sciences. 2021; 11(21):10029. https://doi.org/10.3390/app112110029
Chicago/Turabian StyleHamulka, Jadwiga, Joanna Bryś, Agata Górska, Monika Janaszek-Mańkowska, and Magdalena Górnicka. 2021. "The Quality and Composition of Fatty Acids in Adipose Tissue-Derived from Wild Animals; A Pilot Study" Applied Sciences 11, no. 21: 10029. https://doi.org/10.3390/app112110029
APA StyleHamulka, J., Bryś, J., Górska, A., Janaszek-Mańkowska, M., & Górnicka, M. (2021). The Quality and Composition of Fatty Acids in Adipose Tissue-Derived from Wild Animals; A Pilot Study. Applied Sciences, 11(21), 10029. https://doi.org/10.3390/app112110029