Young Shoots and Mature Red Cabbage Inhibit Proliferation and Induce Apoptosis of Prostate Cancer Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Simulation In Vitro Digestion Model of the Gastrointestinal Tract
2.3. Simulation In Vitro Absorption Model of the Gastrointestinal Tract
2.4. Cell Culture
2.5. Cell Treatment
2.6. Cytotoxicity Analysis
2.7. Cell Proliferation Assay
2.8. The Muse® Flow Cytometer Analysis
2.9. RNA Isolation, cDNA Synthesis and RT-qPCR Analysis
2.10. Western Blot Assays
2.11. Statistical Analysis
3. Results and Discussion
3.1. Cytotoxicity and Proliferation
3.2. Analysis of Apoptosis Using the Muse® Flow Cytometer
3.3. mRNA Expression of Genes and Western Blot Analysis of Protein Levels Associated with Proliferation and Apoptosis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today (accessed on 17 June 2021).
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential health benefits of plant food-derived bioactive components: An overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Majkowska-Gadomska, J.; Wierzbicka, B. Content of basic nutrients and minerals in heads of selected varieties of red cabbage (Brasicca oleracea var. capitata f. rubra). Pol. J. Environ. Stud. 2008, 17, 295–298. [Google Scholar]
- Sawicka, B. Glucosinolates as natural plant substances-structural and application aspects: A review. Cell Tissue Res. 2020, 20, 6919–6928. [Google Scholar]
- Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 2018, 36, 489–517. [Google Scholar] [CrossRef]
- Abellán, Á.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients 2019, 11, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, E.R.; Luo, Y.; Buchanan, R.L. Microgreen nutrition, food safety, and shelf life: A review. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Domagała, D.; Kusznierewicz, B. Young shoots of red cabbage are a better source of selected nutrients and glucosinolates in comparison to the vegetable at full maturity. Eur. Food Res. Technol. 2020, 246, 2505–2515. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Dziadek, K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. Rsc Adv. 2020, 10, 43021–43034. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardized static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Tarko, T.; Semik, D.; Duda-Chodak, A.; Satora, P.; Sroka, P. Przemiany związków polifenolowych w symulowanym przewodzie pokarmowym człowieka. Żywn. Nauka Technol. Jakość 2016, 2, 132–144. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.H.; Kristal, A.R.; Stanford, J.L. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst. 2000, 92, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novio, S.; Cartea, M.E.; Soengaz, P.; Freire-Garabal, M.; Núñez-Iglesias, M.J. Effects of Brassicaceae isothiocyanates on prostate cancer. Molecules 2016, 21, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Kumar, V.; Thukral, A.K.; Bhardwaj, R. Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L. Indian J. Plant Physiol. 2016, 21, 70–75. [Google Scholar] [CrossRef]
- Hail, N., Jr.; Cortes, M.; Drake, E.N.; Spalholz, J.E. Cancer chemoprevention: A radical perspective. Free Rad. Biol. Med. 2008, 45, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Najman, K.; Sadowska, A. Applied sciences effect of red cabbage sprouts treating with organic acids on the content of polyphenols, antioxidant properties and colour parameters. Appl. Sci. 2021, 11, 4890. [Google Scholar] [CrossRef]
- Kestwal, R.M.; Lin, J.C.; Bagal-Kestwal, D.; Chiang, B.H. Glucosinolates fortification of cruciferous sprouts by sulphur supplementation during cultivation to enhance anti-cancer activity. Food Chem. 2011, 126, 1164–1171. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Domagała, D. Wpływ soku z młodych pędów kapusty głowiastej białej (B. oleracea var. capitata f. alba) na żywotność komórek nowotworowych gruczołu piersiowego linii Mcf-7. Bromat. Chem. Toksykol. 2019, 2, 188–193. (In Polish) [Google Scholar]
- Roy, M.K.; Takenaka, M.; Isobe, S.; Tsushida, T. Antioxidant potential, anti-proliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: Effects of thermal treatment. Food Chem. 2007, 103, 106–114. [Google Scholar] [CrossRef]
- Boivin, D.; Lamy, S.; Lord-Dufour, S.; Jackson, J.; Beaulieu, E.; Côté, M.; Moghrabi, A.; Barrette, S.; Gingras, D.; Béliveau, R. Antiproliferative and antioxidant activities of common vegetables: A comparative study. Food Chem. 2009, 112, 374–380. [Google Scholar] [CrossRef]
- Farag, M.A.; Motaal, A.A. Sulforaphane composition, cytotoxic and antioxidant activity of crucifer vegetables. J. Adv. Res. 2010, 1, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.M.; Attardi, L.D. The role of apoptosis in cancer development and treatment response. Nat. Rev. Cancer 2005, 5, 231–237. [Google Scholar] [CrossRef]
- Demchenko, A.P. Beyond Annexin V: Fluorescence response of cellular membranes to apoptosis. Cytotechnology 2013, 65, 157–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Antiproliferative effect of bioaccessible fractions of four Brassicaceae microgreens on human colon cancer cells linked to their phytochemical composition. Antioxidants 2020, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, W.; Liu, C.; Jin, J.; Shao, B.; Shen, L. Inhibition of growth and induction of apoptosis in A549 cells by compounds from oxheart cabbage extract. J. Sci. Food Agric. 2016, 96, 3813–3820. [Google Scholar] [CrossRef]
- Hafidh, R.R.; Abdulamir, A.S.; Abu Bakar, F.; Jalilian, F.A.; Jahanshiri, F.; Abas, F.; Sekawi, Z. Novel anticancer activity and anticancer mechanisms of Brassica oleracea L. var. capitata f. rubra. Eur. J. Integr. Med. 2013, 5, 450–464. [Google Scholar] [CrossRef]
- Singh, A.V.; Xiao, D.; Lew, K.L.; Dhir, R.; Singh, S.V. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 2004, 25, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006, 13, 1423–1433. [Google Scholar] [CrossRef] [Green Version]
- Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2002, 2, 647–656. [Google Scholar] [CrossRef]
- Mirzayans, R.; Andrais, B.; Scott, A.; Murray, D. New insights into p53 signaling and cancer cell response to DNA damage: Implications for cancer therapy. J. Biomed. Biotechnol. 2012, 2012, 170325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018, 25, 65–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratton, S.B.; Salvesen, G.S. Regulation of the Apaf-1–caspase-9 apoptosome. J. Cell Sci. 2010, 123, 3209–3214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Herbert, P.E.; Warrens, A.N. An introduction to death receptors in apoptosis. Int. J. Surg. 2005, 3, 268–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Stark, G.R. NFκβ-dependent signaling pathways. Exp. Hematol. 2002, 30, 285–296. [Google Scholar] [CrossRef]
- Saraste, A.; Pulkki, L. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 2000, 45, 528–537. [Google Scholar] [CrossRef]
- Hemmings, B.A.; Restuccia, D.F. PI3K-PKB/Akt Pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herr, I.; Debatin, K.M. Cellular stress response and apoptosis in cancer therapy. Blood 2001, 98, 2603–2614. [Google Scholar] [CrossRef]
- Chandrasenan, P.; Anjumol, V.M.; Neethu, M.V.; Selvaraj, R.; Anandan, V.; Jacob, G.M. Cytoprotective and antiinflammatory effect of polyphenolic fraction from red cabbage (Brassica oleracea Linn var. capitata f rubra) in experimentally induced ulcerative colitis. J. App. Pharm. Sci. 2016, 6, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Nam, M.K.; Kang, K.J. The effect of red cabbage (Brassica oleracea L. var. capitata f. rubra) extract on the apoptosis in human breast cancer MDA-MB-231 cells. J. Korean Soc. Food Sci. Nutr. 2013, 42, 8–16. [Google Scholar]
- Smith, T.K.; Mithen, R.; Johnson, I.T. Effects of Brassica vegetable juice on the induction of apoptosis and aberrant crypt foci in rat colonic mucosal crypts in vivo. Carcinogenesis 2003, 24, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Gamet-Payrastre, L.; Li, P.; Lumeau, S.; Cassar, G.; Dupont, M.A.; Chevolleau, S.; Gasc, N.; Tulliez, J.; Tercé, F. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 2000, 60, 1426–1433. [Google Scholar]
- Wang, L.; Liu, D.; Ahmed, T.; Chung, F.L.; Conaway, C.; Chiao, J.W. Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int. J. Oncol. 2004, 24, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Shen, G.; Chen, C.; Gélinas, C.; Kong, A.N. Suppression of NF-κβ and NF- κβ -regulated gene expression by sulforaphane and PEITC through Iκβα, IKK pathway in human prostate cancer PC-3 cells. Oncogene 2005, 24, 4486–4495. [Google Scholar] [CrossRef] [Green Version]
- Kapusta-Duch, J.; Kusznierewicz, B. Young shoots of white and red headed cabbages like novel sources of glucosinolates as well as antioxidative substances. Antioxidants 2021, 10, 1277. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, F.H.; Li, Y. Indole-3-Carbinol and prostate cancer. J. Nutr. 2004, 134, 3493S–3498S. [Google Scholar] [CrossRef] [PubMed]
- Chinni, S.R.; Li, Y.; Upadhyay, S.; Koppolu, P.K.; Sarkar, F.H. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 2001, 20, 2927–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachshon-Kedmi, M.; Yannai, S.; Haj, A.; Fares, F.A. Indole-3-Carbinol and 3, 3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem. Toxicol. 2003, 41, 745–752. [Google Scholar] [CrossRef]
- Kronbak, R.; Duus, F.; Vang, O. Effect of 4-methoxyindole-3-carbinol on the proliferation of colon cancer cells in vitro, when treated alone or in combination with indole-3-carbinol. J. Agric. Food Chem. 2010, 58, 8453–8459. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Alexaki, V.I.; Notas, G.; Nifli, A.P.; Nistikaki, A.; Hatzoglou, A.; Bakogeorgou, E.; Kouimtzoglou, E.; Blekas, G.; Boskou, D.; et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res. 2004, 6, R63–R74. [Google Scholar] [CrossRef] [Green Version]
- Nichenametla, S.N.; Taruscio, T.G.; Barney, D.L.; Exon, J.H. A review of the effects and mechanisms of polyphenolics in cancer. Crit. Rev. Food Sci. Nutr. 2006, 46, 161–183. [Google Scholar] [CrossRef]
- Stacewicz-Sapuntzakis, M.; Borthakur, G.; Burns, J.L.; Bowen, P.E. Correlations of dietary patterns with prostate health. Mol. Nutr. Food Res. 2008, 52, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.K.; King, J.L.; Harmston, M.; Lila, M.A.; Erdman, J.W. Synergistic effects of flavonoids on cell proliferation in Hepa-1c1c7 and LNCaP cancer cell lines. J. Food Sci. 2006, 71, S358–S363. [Google Scholar] [CrossRef]
- Shih, P.; Yeh, C.; Yen, G. Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem. Toxicol. 2005, 43, 1557–1566. [Google Scholar] [CrossRef]
- Hafeez, B.B.; Siddiqui, I.A.; Asim, M.; Malik, A.; Afaq, F.; Adhami, V.M.; Saleem, M.; Din, M.; Mukhtar, H. A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC-3 cells in vitro and in vivo: Involvement of nuclear factor-κβ signaling. Cancer Res. 2008, 68, 8564–8572. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Huang, H.P.; Hsu, J.D.; Yang, S.F.; Wang, C.J. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Toxicol. Appl. Pharmacol. 2005, 205, 201–212. [Google Scholar] [CrossRef]
- Reddivari, L.; Vanamala, J.; Chintharlapalli, S.; Safe, S.H.; Miller, J.C. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis 2007, 28, 2227–2235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
DU145 Cytotoxicity [%] | LNCaP Cytotoxicity [%] | PNT-2 Cytotoxicity [%] | |||
---|---|---|---|---|---|
ys d + a vs. UC ± SD | mv d + a vs. UC ± SD | ys d + a vs. UC ± SD | mv d + a vs. UC ± SD | ys d + a vs. UC ± SD | mv d + a vs. UC ± SD |
6.44 ± 2.51 | 7.05 ± 2.88 | 7.27 ± 1.53 | 7.9 ± 1.95 | 4.09 ± 1.43 | 5.37 ± 1.74 |
UC | STS | ys d + a | ys% | mv d + a | mv% | |
---|---|---|---|---|---|---|
live | 94.90 d ± 0.30 | 67.18 c ± 0.38 | 54.44 a ± 2.84 | 61.50 b ± 0.37 | 55.69 a ± 0.69 | 68.04 c ± 1.84 |
early apoptotic | 4.00 a ± 0.25 | 30.10 d± 0.70 | 25.17 c ± 3.30 | 32.54 d ± 0.47 | 30.63 d ± 4.93 | 20.24 b ± 1.77 |
late apoptotic | 1.03 a ± 0.08 | 2.62 a ± 1.06 | 19.34 d ± 0.47 | 5.93 b ± 0.80 | 13.44 c ± 4.10 | 11.63 c ± 0.10 |
dead | 0.08 a ± 0.03 | 0.11 a ± 0.02 | 1.07 c ± 0.00 | 0.04 a ± 0.04 | 0.24 b ± 0.14 | 0.10 a ± 0.03 |
total apoptotic | 5.03 a ± 0.33 | 32.72 b ± 0.36 | 44.50 d ± 2.83 | 38.47 c ± 1.33 | 44.07 d ± 0.83 | 31.87 b ± 1.87 |
UC | STS | ys d + a | ys% | mv d + a | mv% | |
---|---|---|---|---|---|---|
live | 93.55 f ± 0.50 | 33.05 a ± 0.25 | 37.33 b ± 0.22 | 77.38 d ± 1.88 | 39.28 c ± 0.68 | 79.73 e ± 0.27 |
caspase+ | 5.53 a ± 0.18 | 40.18 d± 0.28 | 41.43 c ± 0.68 | 19.00 b ± 1.85 | 54.30 e ± 0.05 | 7.68 a ± 0.18 |
caspase+/dead | 0.78 a ± 0.23 | 26.70 f ± 0.05 | 21.1 e ± 0.45 | 3.30 b ± 0.05 | 5.90 c ± 0.60 | 12.55 d ± 0.50 |
dead | 0.15 b ± 0.05 | 0.08 a,b ± 0.03 | 0.15 e ± 0.0 | 0.33 c ± 0.07 | 0.53 d ± 0.03 | 0.05 a ± 0.05 |
total caspase | 6.30 a ± 0.05 | 66.88 f ± 0.22 | 62.53 e ± 0.23 | 22.30 c ± 1.80 | 60.20 d ± 0.65 | 20.23 b ± 0.33 |
UC | STS | ys d + a | ys% | mv d + a | mv% | |
---|---|---|---|---|---|---|
live | 94.58 e ± 0.27 | 64.57 d ± 1.64 | 42.4 a ± 1.00 | 55.34 c ± 1.67 | 51.25 b ± 2.85 | 62.93 d ± 0.60 |
early apoptotic | 4.18 a ± 0.43 | 30.17 c,d ± 1.77 | 22.4 b ± 2.87 | 33.53 c ± 1.40 | 29.45 c,d ± 6.00 | 27.33 b,d ± 0.20 |
late apoptotic | 0.88 a ± 0.08 | 5.03 a,b ± 0.23 | 32.97 d ± 2.30 | 10.96 b ± 0.23 | 19.05 c ± 8.65 | 9.6 b ± 0.87 |
dead | 0.1 a ± 0.05 | 0.23 a ± 0.11 | 2.24 b ± 0.43 | 0.17 a ± 0.04 | 0.25 a ± 0.20 | 0.14 a ± 0.07 |
total apoptotic | 5.33 a ± 0.23 | 35.20 b ± 1.54 | 55.37 e ± 0.57 | 44.5 c ± 1.63 | 48.5 d ± 2.65 | 36.94 b ± 0.66 |
UC | STS | ys d + a | ys% | mv d + a | mv% | |
---|---|---|---|---|---|---|
live | 87.83 d ± 2.78 | 34.25 a ± 1.55 | 30.28 a ± 2.08 | 58.65 b ± 0.35 | 62.2 b ± 9.35 | 78.73 c ± 0.57 |
caspase+ | 8.68 a ± 0.77 | 38.50 d ± 14.95 | 22.13 b,c ± 1.73 | 15.55 a,b,c ± 0.15 | 25.2 c ± 3.75 | 12.05 a,b ± 0.05 |
caspase+/dead | 3.28 a ± 1.98 | 26.83 b ± 16.68 | 47.55 c ± 0.35 | 25.80 b ± 0.20 | 12.4 a ± 5.65 | 9.08 a ± 0.48 |
dead | 0.23 c ± 0.03 | 0.43 d ± 0.18 | 0.05 a,b ± 0.0 | 0.0 a ± 0.0 | 0.2 b,c ± 0.05 | 0.1 a,b,c ± 0.1 |
total caspase | 11.95 a ± 2.75 | 63.60 d ± 2.01 | 69.68 d ± 2.08 | 41.35 c ± 0.35 | 37.6 c ± 9.4 | 21.18 b ± 0.48 |
Gene Symbol | DU145 | LNCaP | ||||||
---|---|---|---|---|---|---|---|---|
ys d + a vs. UC | ys% vs. UC | mv d + a vs. UC | mv% vs. UC | ys d + a vs. UC | ys% vs. UC | mv d + a vs. UC | mv% vs. UC | |
AIFM1 | 10.888 ** | 5.813 ** | 7.402 ** | 4.843 ** | 5.971 ** | 2.399 ** | 1.474 | 3.645 ** |
AKT1 | 0.105 ** | 0.860 | 0.117 ** | 1.874 | 0.221 ** | 0.281 ** | 0.209 ** | 1.006 |
Apaf-1 | 6.649 ** | 1.198 | 4.854 ** | 0.952 | 1.545 * | Ns | 3.162 ** | Ns |
BAD | 2.041 * | 2.397 * | 1.676 * | 2.618 ** | 1.300 | 1.891 | 1.600 | 1.055 |
BBC3 | 4.987 ** | 2.346 ** | 1.641 * | 1.422 * | Ns | Ns | Ns | Ns |
CASP-3 | 10.997 ** | 1.550 | 5.606 ** | 1.429 * | 2.232 | 1.844 | 4.721 ** | 1.120 |
CASP-7 | 8.893 ** | 2.511 ** | 2.498 ** | 0.754 | 3.305 ** | 2.520 * | 2.696 ** | 1.194 |
CASP-8 | 5.748 ** | 0.462 ** | 1.503 ** | 0.583 | Ns | Ns | Ns | Ns |
DIABLO | 4.901 ** | 2.481 ** | 4.113 ** | 6.920 ** | Ns | Ns | Ns | Ns |
FADD | 2.242 ** | 1.500 | 2.152 * | 1.483 | 0.998 | 0.773 | 0.621 ** | 0.619 ** |
FAS | 6.617 ** | 1.124 | 4.812 ** | 3.216 * | 0.766 | 0.058 | 0.837 | 2.938 * |
TP53 | 4.821 ** | 1.219 ** | 1.076 | 2.756 ** | 1.802 ** | 1.524 ** | 1.809 ** | 1.502 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozdowska, M.; Leszczyńska, T.; Piasna-Słupecka, E.; Domagała, D.; Koronowicz, A. Young Shoots and Mature Red Cabbage Inhibit Proliferation and Induce Apoptosis of Prostate Cancer Cell Lines. Appl. Sci. 2021, 11, 11507. https://doi.org/10.3390/app112311507
Drozdowska M, Leszczyńska T, Piasna-Słupecka E, Domagała D, Koronowicz A. Young Shoots and Mature Red Cabbage Inhibit Proliferation and Induce Apoptosis of Prostate Cancer Cell Lines. Applied Sciences. 2021; 11(23):11507. https://doi.org/10.3390/app112311507
Chicago/Turabian StyleDrozdowska, Mariola, Teresa Leszczyńska, Ewelina Piasna-Słupecka, Dominik Domagała, and Aneta Koronowicz. 2021. "Young Shoots and Mature Red Cabbage Inhibit Proliferation and Induce Apoptosis of Prostate Cancer Cell Lines" Applied Sciences 11, no. 23: 11507. https://doi.org/10.3390/app112311507
APA StyleDrozdowska, M., Leszczyńska, T., Piasna-Słupecka, E., Domagała, D., & Koronowicz, A. (2021). Young Shoots and Mature Red Cabbage Inhibit Proliferation and Induce Apoptosis of Prostate Cancer Cell Lines. Applied Sciences, 11(23), 11507. https://doi.org/10.3390/app112311507