Broadband Passively Mode-Locked Fiber Laser with DNA Aqueous Solution as Saturable Absorber
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sugioka, K.; Cheng, Y. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3. [Google Scholar] [CrossRef]
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photonics 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Lubatschowski, H.; Heisterkamp, A.; Will, F.; Serbin, J.; Bauer, T.; Fallnich, C.; Welling, H.; Mueller, W.; Singh, A.I.; Ertmer, W. Ultrafast laser pulses for medical applications. Commer. Biomed. Appl. Ultrafast Free Lasers 2002, 4633, 38. [Google Scholar] [CrossRef]
- Sucha, G. Overview of industrial and medical applications of ultrafast lasers. In Ultrafast Lasers: Technology and Applications; Fermann, M.E., Galvanauskas, A., Sucha, G., Eds.; CRC Press: New York, NY, USA, 2002; pp. 286–290. [Google Scholar]
- Rizvi, N.H. Femtosecond laser micromachining: Current status and applications. Glass 2003, 50, 107–112. [Google Scholar]
- Fermann, M.E.; Galvanauskas, A.; Sucha, G.; Harter, D. Fiber-lasers for ultrafast optics. Appl. Phys. B Lasers Opt. 1997, 65, 259–275. [Google Scholar] [CrossRef]
- Haus, H.A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1173–1185. [Google Scholar] [CrossRef]
- Ippen, E.P. Principles of passive mode locking. Appl. Phys. B Laser Opt. 1994, 58, 159–170. [Google Scholar] [CrossRef]
- Paschotta, R.; Keller, U. Passive mode locking with slow saturable absorbers. Appl. Phys. B Lasers Opt. 2001, 73, 653–662. [Google Scholar] [CrossRef]
- Mark, J.; Liu, L.Y.; Hall, K.L.; Haus, H.A.; Ippen, E.P. Femtosecond pulse generation in a laser with a nonlinear external resonator. Opt. Lett. 1989, 14, 48. [Google Scholar] [CrossRef]
- Nikolaus, B.; Grischkowsky, D.; Balant, A.C. Optical pulse reshaping based on the nonlinear birefringence of single-mode optical fibers. Opt. Lett. 1983, 8, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.E.; Jones, D.J.; Tamura, K.; Haus, H.A.; Ippen, E.P. Ultrashort-pulse fiber ring lasers. Appl. Phys. B Lasers Opt. 1997, 65, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, J.; Kardaś, T.M.; Radzewicz, C.; Stepanenko, Y. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO 2017), San Jose, CA, USA, 14–19 May 2017. [Google Scholar] [CrossRef]
- Keller, U.; Weingarten, K.J.; Kärtner, F.X.; Kopf, D.; Braun, B.; Jung, I.D.; Fluck, R.; Honninger, C.; Matuschek, N.; Aus der Au, J. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–451. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, F.; Leblond, H.; Salhi, M.; Komarov, A.; Haboucha, A. Models for passively mode-locked fiber lasers. Fiber Integr. Opt. 2008, 27, 370–391. [Google Scholar] [CrossRef] [Green Version]
- Sobon, G.; Sotor, J.; Abramski, K.M. All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber. Laser Phys. Lett. 2012, 9, 581–586. [Google Scholar] [CrossRef]
- Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol. 2004, 22, 51–56. [Google Scholar] [CrossRef]
- Schmidt, A.; Rivier, S.; Steinmeyer, G.; Yim, J.H.; Cho, W.B.; Lee, S.; Rotermund, F.; Pujol, M.C.; Mateos, X.; Aguilo, M.; et al. Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber. Opt. Lett. 2008, 33, 729. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics 2013, 7, 842–845. [Google Scholar] [CrossRef]
- Liu, X.M.; Yang, H.R.; Cui, Y.D.; Chen, G.W.; Yang, Y.; Wu, X.Q.; Yao, X.K.; Han, D.D.; Han, X.X.; Zeng, C.; et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Steckl, A.J. DNA—A new material for photonics? Nat. Photonics 2007, 1, 3–5. [Google Scholar] [CrossRef]
- Steckl, A.J.; Spaeth, H.; You, H.; Gomez, E.; Grote, J. DNA as an optical material. Opt. Photonics News 2011, 22, 34. [Google Scholar] [CrossRef]
- Heckman, E.M.; Grote, J.G.; Yaney, P.P.; Hopkins, F.K. DNA-based nonlinear photonic materials. Nonlinear Opt. Transm. Multiphoton Process. Org. II 2004, 5516, 47. [Google Scholar] [CrossRef]
- Samoc, M.; Samoc, A.; Grote, J.G. Complex nonlinear refractive index of DNA. Chem. Phys. Lett. 2006, 431, 132–134. [Google Scholar] [CrossRef]
- Cha, Y.J.; Yoon, D.K. Control of periodic zigzag structures of DNA by a simple shearing method. Adv. Mater. 2017, 29, 1–6. [Google Scholar] [CrossRef]
- Khazaeinezhad, R.; Hosseinzadeh Kassani, S.; Paulson, B.; Jeong, H.; Gwak, J.; Rotermund, F.; Yeom, D.-I.; Oh, K. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, Y.; Yan, Z.; Wang, Y.; Meng, B.; Liang, G.; Sun, H.; Yu, X.; Zhang, Y.; Cheng, X.; et al. Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 441–447. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, S.; Liang, W.; Luo, S.; He, Z.; Ge, Y.; Wang, H.; Cao, R.; Zhang, F.; Wen, Q.; et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Long, H.; Liu, S.; Wen, Q.; Yuan, H.; Tang, C.Y.; Qu, J.; Ma, S.; Qarony, W.; Zheng, L.H.; Tsang, Y.H. In2Se3 Nanosheets with broadband saturable absorption used for near-infrared femtosecond laser mode locking. Nanotechnology 2019, 30, 465704. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, J.J.; Lee, S.B.; Kim, D.-Y.; Lee, K.; Lee, W. Broadband Passively Mode-Locked Fiber Laser with DNA Aqueous Solution as Saturable Absorber. Appl. Sci. 2021, 11, 9871. https://doi.org/10.3390/app11219871
Kim M, Kim JJ, Lee SB, Kim D-Y, Lee K, Lee W. Broadband Passively Mode-Locked Fiber Laser with DNA Aqueous Solution as Saturable Absorber. Applied Sciences. 2021; 11(21):9871. https://doi.org/10.3390/app11219871
Chicago/Turabian StyleKim, Mijin, Jeong Je Kim, Sang Bae Lee, Dal-Young Kim, Kwanil Lee, and Wonsuk Lee. 2021. "Broadband Passively Mode-Locked Fiber Laser with DNA Aqueous Solution as Saturable Absorber" Applied Sciences 11, no. 21: 9871. https://doi.org/10.3390/app11219871
APA StyleKim, M., Kim, J. J., Lee, S. B., Kim, D. -Y., Lee, K., & Lee, W. (2021). Broadband Passively Mode-Locked Fiber Laser with DNA Aqueous Solution as Saturable Absorber. Applied Sciences, 11(21), 9871. https://doi.org/10.3390/app11219871